
MTH 4424 Homework and Lecture Notes
Fall 2014

Pat Rossi Name

Instructions: Prove or Disprove the following. In the case where the claim is false, provide a counter-
example.

1. The square of an odd natural number is odd.

(i.e., If n ∈ N and n is odd, then n2 is odd also.)

Proof. Let n be an odd natural number. Then n can be represented as n = 2k + 1 for some natural
number k.

Observe: n2 = (2k + 1)2 = 4k2 + 4k + 1 = 2
(
2k2 + 2k

)︸ ︷︷ ︸
m

+ 1 = 2m+ 1

i.e., n2 has the form 2m+ 1. Hence, n2 is odd.

2. If m ∈ N and m2 is even, then m is even also.

Proof. This is just the contrapositive of the preceding theorem. Hence, it is true.

3. The square of an even natural number is even.

(i.e., If n ∈ N and n is even, then n2 is even also.)

Proof. Let n be an even natural number. Then n can be represented as n = 2k for some natural
number k.

Observe: n2 = (2k)2 = 4k2 = 2
(
2k2
)︸ ︷︷ ︸

m

= 2m

i.e., n2 has the form 2m. Hence, n2 is even.

4. If m ∈ N and m2 is odd, then m is odd also.

Proof. This is just the contrapositive of the preceding theorem. Hence, it is true.

5. Consequently, we have the following theorem:

If m ∈ N, then m2 is even if and only if m is even, and m2 is odd if and only if m is odd.



6.
√
2 is an irrational number.

Proof. Suppose, for the sake of deriving a contradiction, that
√
2 is rational.

Then ∃ m,n ∈ N such that
√
2 = m

n .

Without loss of generality, we can assume that m and n are relatively prime.*

Thus, we have:
√
2 = m

n .

⇒ 2 = m2

n2

⇒ 2n2 = m2

⇒ m2 is even

⇒ m is even

⇒ ∃ k ∈ N such that m = 2k.

Thus, 2n2 = m2 = (2k)
2
= 4k2

i.e., 2n2 = 4k2

⇒ n2 = 2k2

⇒ n2 is even

⇒ n is even

i.e., m and n are both even, and consequently, m and n both have a factor of 2.

This contradicts the assumption that m and n are relatively prime.

Since the assumption that
√
2 is rational leads to a contradiction, the assumption must be false.

Hence,
√
2 is irrational.

*If m and n are not relatively prime, then let d be the greatest common divisor of m and n. There
exist relatively prime integers m1 and n1 such that m = dm1 and n = dn1. Thus we can write√
2 = m

n =
dm1

dn1
= m1

n1
, and

√
2 = m1

n1
is written as the quotient of relatively prime integers.

7. The sum or difference of rational numbers is rational.

Proof. Let x, y ∈ Q.

Then ∃ m,n, r, s ∈ Z with n, s 6= 0 such that x = m
n and y =

r
s .

Observe: x± y = m
n ±

r
s =

ms±nr
ns .

Since integers are closed under addition, subtraction, and multiplication, x±y = ms±nr
ns is the quotient

of integers, hence rational.
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8. The product of rational numbers is rational.

Proof. Let x, y ∈ Q.

Then ∃ m,n, r, s ∈ Z with n, s 6= 0 such that x = m
n and y =

r
s .

Observe: x · y = m
n ·

r
s =

mr
ns .

Since integers are closed under multiplication, x · y = mr
ns is the quotient of integers, hence rational.

9. The quotient of rational numbers is rational.

This is FALSE.

Proof. As a counter-example, consider x = 1 and y = 0.

Observe: x, y ∈ Q, and yet xy is undefined (hence, not rational).

10. The quotient of rational numbers is rational, provided that the divisor is non-zero.

Proof. Let x, y ∈ Q, with y 6= 0.

Then ∃ m,n, p, q ∈ Z with n, p, q 6= 0 such that x = m
n and y =

p
q .

Observe: xy =
(mn )
( pq )

= m
n ·

q
p =

mq
np

Since integers are closed under multiplication, mq and np are integers. Furthermore, np is nonzero, by
the Zero Divisor Property. Therefore, xy =

mq
np is the quotient of integers, hence rational.

11. The sum (or difference) of a rational and an irrational is irrational.

Proof. Let x ∈ Q, and y ∈ Qc.

Suppose, for the sake of deriving a contradiction, that x+ y = z,where z ∈ Q.

Then y = z︸︷︷︸
∈Q

− x︸︷︷︸
∈Q

⇒ y is rational, since it is the difference of rationals.

This contradicts the fact that y ∈ Qc.

Since the assumption that z ∈ Q leads to a contradiction, it must be the case that z ∈ Qc.

Hence, the sum of a rational x and an irrational y is the irrational z.

Similarly, the difference of a rational and an irrational is irrational.

12. The product or quotient of a rational number and an irrational number is irrational.

This is FALSE.

Proof. As a counter-example, consider x = 0 and let y be any irrational number. Then x · y = 0 is
the product of a rational and an irrational, and yet it is rational.

Similarly, 0y = 0 is the quotient of a rational and an irrational, and yet it is rational.
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13. The product or quotient of a non-zero rational number and an irrational number is irrational.

Proof. Let x ∈ Q, and y ∈ Qc.

Suppose, for the sake of deriving a contradiction, that x · y = z,where z ∈ Q.

Then y = z
x is rational, since it is the quotient of rationals.

This contradicts the fact that y ∈ Qc.

Since the assumption that z ∈ Q leads to a contradiction, it must be the case that z ∈ Qc.

Hence, the product of a non-zero rational x and an irrational y is irrational z.

Regarding a quotient, suppose, for the sake of contradiction, that xy = z,where z ∈ Q.

Then y = x
z is rational, since it is the quotient of rationals.

This contradicts the fact that y ∈ Qc.

Since the assumption that z ∈ Q leads to a contradiction, it must be the case that z ∈ Qc.

Similarly, since the quotient x
y is irrational, its reciprocal

y
x also has to be irrational - otherwise, it

would be the quotient of integers, and hence x
y would be the quotient of rationals, which we know to

be false.
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14. The sum or difference of two irrational numbers may or may not be irrational.

Proof. This true.

First, we will show that the sum or difference of two irrational numbers can be rational.

Observe:
√
2 +

(
−
√
2
)
= 0 is the sum of irrationals, and the sum is rational.

Similarly,
√
2−
√
2 = 0 is the difference of irrationals, and the difference is rational.

Next, we will show that the sum or difference of two irrational numbers can be irrational.

Observe:
√
2 +
√
2 = 2

√
2 is the sum or irrationals, and yet it is irrational, as it is the product of a

nonzero rational and an irrational.

Hence, the sum of two irrationals may be irrational.

Similarly, 2
√
2−
√
2 =
√
2 is the difference of irrationals, and this difference is irrational.

(a) Alternatively:
To show that the sum of two irrationals may be rational, consider x = 0.101001000100001 . . . and
y = 0.010110111011110 . . .

Observe: x, y ∈ Qc and yet, x+ y = 0.11111111111111 . . . ∈ Q

To show that the sum of two irrationals may be irrational, consider x = y = 0.101001000100001 . . .

Observe: x, y ∈ Qc and yet, x+ y = 0.202002000200002 . . . ∈ Qc

As another example, consider x = y = 0.101001000100001 . . . and y = 0.020220222022220 . . .

Observe: x, y ∈ Qc and yet, x+ y = 0.121221222122221 . . . ∈ Qc

15. The product or quotient of two irrational numbers may or may not be irrational.

Proof. To show that the product or quotient of two irrational numbers may be rational, observe that√
2 ·
√
2 = 2 is the product of irrationals, and this product is rational.

Similarly,
√
2√
2
= 1 is the quotient of irrationals, and this quotient is rational.

To show that the product or quotient of two irrational numbers may be rational, observe that 1 +
√
2

is irrational, as it is the sum of a rational and an irrational.

Thus,
(
1 +
√
2
) (
1 +
√
2
)
= 3 + 2

√
2 is the product of irrationals, and this product is irrational, as it

is the sum of a rational and an irrational.

Also, 1+
√
2√
2
= 1√

2
+
√
2√
2
= 1√

2
+ 1 is the quotient of irrationals and this is irrational as it is the sum of

an irrational and a rational.

Alternate Proof: If we accept the fact that the square root of any integer that is not a perfect
square is irrational, then we have easier proofs that the product or quotient of irrationals can be
irrational:

Observe:
√
3
√
2 =
√
6 is the product of irrationals, and this product is irrational.

Observe:
√
6√
3
=
√
2 is the quotient of irrationals, and this quotient is irrational.
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16. Between any two distinct rational numbers there is another rational number.

Proof. Let x, y ∈ Q, with x 6= y.

Without loss of generality, x < y.

Define z by z = x+y
2

Observe: x+ y is rational, as it is the sum of rationals.

Thus, z = x+y
2 is rational, as it is the quotient of rationals.

Furthermore, x = x+x
2 < x+y

2 < y+y
2 = y.

i.e., x < x+y
2 < y.

Thus, z = x+y
2 is a rational number that lies between x and y.

17. Between any two distinct real numbers there is a rational number.

Proof. Let x, y ∈ R, with x 6= y.

Without loss of generality, x < y.

Thus, ∃ ε > 0 such that y − x = ε.

Select a natural number n such that nε > 1.

⇒ n (y − x) = nε > 1.

⇒ ny − nx = nε > 1.

Since ny − nx > 1, there exists an integer m such that nx < m < ny.

⇒ x < m
n < y.

Since m
n is the quotient of integers, it is rational.

i.e., mn is a rational number between x and y.

Remark 1 The preceding proof can be extended to show that in each interval
(
x, mn

)
and

(
m
n , y

)
there is a

rational number (let’s say mx

nx
∈
(
x, mn

)
, and my

ny
∈
(
m
n , y

)
, then in each of the four subintervals defined by

these rational numbers, there is a rational number, etc. Hence, between any two distinct real numbers x and
y, there are infinitely many rational numbers.
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18. Between any two distinct real numbers there is an irrational number.

Proof. Let x, y ∈ R, with x 6= y.

Without loss of generality, x < y.

⇒
√
2x <

√
2y

Since there exists infinitely many rational numbers between any two distinct real numbers, ∃ q ∈ Q,
with q 6= 0, such that

√
2x < q <

√
2y.

⇒ x < q√
2
< y.

Observe: z = q√
2
∈ QC , as it is the quotient of a nonzero rational number and an irrational number.

Thus, z = q√
2
is an irrational number between x and y.

Remark 2 The preceding proof was inspired by Taoufiq Bellamine and refined by Niall McNellis.
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19. Prove or disprove:

(a) f : R→ R given by f (x) = 5x+ 3 is onto

Proof. We must show that ∀y ∈ R, ∃x ∈ R such that f (x) = y.

Let y ∈ R be given.

Let x ∈ R be given by x = y−3
5

Observe: f (x) =5x+ 3=5
(
y−3
5

)
+ 3=(y − 3) + 3= y.

Thus, given y ∈ R, ∃x ∈ R (namely x = y−3
5 ) such that f (x) = y.

Hence, f (x) is onto.

Scratchwork:
We want: x such that f (x) = y.
⇒ 5x+ 3 = y
⇒ 5x = y − 3
⇒ x = y−3

5

(b) f : R→ R given by f (x) = 5x+ 3 is one to one

Proof. Suppose that f (x1) = f (x2)
⇒ 5x1 + 3 = 5x2 + 3
⇒ 5x1 = 5x2
⇒ x1 = x2

i.e., f (x1) = f (x2)⇒ x1 = x2.

Hence, f is one to one.

(c) f : R→ R given by f (x) = 5x2 + 3 is onto

Note that since x2 ≥ 0, it follows that 5x2 + 3 ≥ 3.

Therefore our claim is false.

To cite a specific counter-example, consider y = 0. There does not exist an x ∈ R such that
f (x) = 0.

(d) f : R→ R given by f (x) = 5x2 + 3 is one to one.

This is false. As a counter-example, consider x1 = −1 and x2 = 1.

Observe that x1 and x2 are are distinct values of x such that f (x1) = 8 = f (x2) .

i.e., x1 6= x2, and yet f (x1) = f (x2) .

Hence, f is not one to one.
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(e) f : R→ R given by f (x) = 5x3 + 3 is onto

Proof. We must show that ∀y ∈ R, ∃x ∈ R such that f (x) = y.

Let y ∈ R be given.

Let x ∈ R be given by x =
(
y−3
5

) 1
3

Observe: f (x) =5x3 + 3=5
((

y−3
5

) 1
3

)3
+ 3= 5

(
y−3
5

)
+ 3 =(y − 3) + 3= y.

Thus, given y ∈ R, ∃x ∈ R (namely x =
(
y−3
5

) 1
3 ) such that f (x) = y.

Hence, f (x) is onto.

Scratchwork:
We want: x such that f (x) = y.
⇒ 5x3 + 3 = y
⇒ 5x3 = y − 3
⇒ x3 = y−3

5

⇒ x =
(
y−3
5

) 1
3

(f) f : R→ R given by f (x) = 5x3 + 3 is one to one

Proof. Suppose that f (x1) = f (x2)
⇒ 5x31 + 3 = 5x32 + 3
⇒ 5x31 = 5x32
⇒ x31 = x32
⇒ x1 = x2

i.e., f (x1) = f (x2)⇒ x1 = x2.

Hence, f is one to one.

20. Prove or disprove:

(a) Prove or Disprove: f : R→ R, given by f (x) = 4x− 7 is one-to-one.
Proof. Suppose that f (x1) = f (x2)

⇒ 4x1 − 7 = 4x2 − 7
⇒ 4x1 = 4x2
⇒ x1 = x2

i.e., f (x1) = f (x2)⇒ x1 = x2.

Hence, f is one to one.
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(b) Prove or Disprove: f : R→ R, given by f (x) = 4x− 7 is onto

Proof. We must show that ∀y ∈ R, ∃x ∈ R such that f (x) = y.

Let y ∈ R be given.

Let x ∈ R be given by x = y+7
4

Observe: f (x) =4x− 7=4
(
y+7
4

)
− 7=(y + 7)− 7= y.

Thus, given y ∈ R, ∃x ∈ R (namely x = y+7
4 ) such that f (x) = y.

Hence, f (x) is onto.

Scratchwork:
We want: x such that f (x) = y.
⇒ 4x− 7 = y
⇒ 4x = y + 7

⇒ x = y+7
4

(c) Prove or Disprove: f : R→ R, given by f (x) = 2x2 + 4 is one-to-one.

Proof. This is false.

As a counter-example, consider:

x1 = −1 and x2 = 1 are distinct values of x such that f (x1) = 6 = f (x2) .

i.e., ∃ x1 6= x2 such that f (x1) = f (x2) .

Hence, f is not one to one.

(d) Prove or Disprove: f : R→ R, given by f (x) = 2x2 + 4 is onto

Proof. The claim is false.

Note that since x2 ≥ 0, it follows that 2x2 + 4 ≥ 4.

To cite a specific counter-example, consider y = 0. By the aforementioned reasoning, there does
not exist an x such that f (x) = y.

Hence, f is not onto.

(e) Prove or Disprove: f : R→ R, given by f (x) = 3x3 + 2 is one-to-one.

Proof.
Suppose that f (x1) = f (x2)

⇒ 3x31 + 2 = 3x32 + 2
⇒ 3x31 = 3x32
⇒ x31 = x32
⇒ x1 = x2

i.e., f (x1) = f (x2)⇒ x1 = x2.

Hence, f is one to one.
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(f) Prove or Disprove: f : R→ R, given by f (x) = 3x3 + 2 is onto

Proof. We must show that ∀y ∈ R, ∃x ∈ R such that f (x) = y.

Let y ∈ R be given.

Let x ∈ R be given by x =
(
y−2
3

) 1
3

Observe: f (x) =3x3 + 2=3
((

y−2
3

) 1
3

)3
+ 2= 3

(
y−2
3

)
+ 2 =(y − 2) + 2= y.

Thus, given y ∈ R, ∃x ∈ R (namely x =
(
y−2
3

) 1
3 ) such that f (x) = y.

Hence, f (x) is onto.

Scratchwork:
We want x such that f (x) = y.
⇒ 3x3 + 2 = y
⇒ 3x3 = y − 2
⇒ x3 = y−2

3

⇒ x =
(
y−2
3

) 1
3

21. The composition of one to one functions is one to one.

(i.e., If f : X→ Y is one to one, and g : Y → Z is one to one, then g ◦ f : X→ Z is one to one.)

Proof. Let the hypothesis be given. (i.e., Suppose that f : X→ Y is one to one, and g : Y → Z is
one to one.)

Suppose also that g (f (x1)) = g (f (x2)) .

⇒ f (x1) = f (x2) , since g is one to one.

⇒ x1 = x2, since f is one to one.

i.e., g (f (x1)) = g (f (x2))⇒ x1 = x2.

Hence, g ◦ f is one to one.

22. The composition of onto functions is onto.

(i.e., If f : X→ Y is onto, and g : Y → Z is onto, then g ◦ f : X→ Z is onto.)

Proof. Let the hypothesis be given. (i.e., Suppose that f : X→ Y is onto, and g : Y → Z is onto.)

Let z ∈ Z.

Since g is onto, ∃y ∈ Y (call it yz) such that g (yz) = z.

Since f is onto, ∃x ∈ X (call it xz) such that f (xz) = yz.

Observe: g (f (xz)) = g (yz) = z.

Thus, given z ∈ Z, ∃x ∈ X (namely xz) such that (g ◦ f) (x) = z.

Hence, g ◦ f is onto.

11



23. Given f : X→ Y and g : Y → Z, Suppose that g ◦f : X→ Z is one to one. Is either f or g necessarily
one to one?

Claim: g is not necessarily one to one.

Proof. Consider f : X→ Y and g: Y → Z as shown below. Note that g ◦ f : X→ Z is one to one, as
x1 6= x2 ⇒ f (x1) 6= f (x2) , but g : Y → Z is not one to one.

X Y Z

a

b

1

2

3

x

y

f g

Claim: f must be one to one.

Proof. Let the hypothesis be given. (i.e., suppose that g ◦ f : X→ Z is one to one.)

Suppose also, for the sake of deriving a contradiction, that f : X→ Y is not one to one. Then ∃x1,
x2 ∈ X, with x1 6= x2, such that f (x1) = f (x2) .

⇒ g (f (x1)) = g (f (x2)) .

Thus, ∃x1, x2 ∈ X, with x1 6= x2, such that g (f (x1)) = g (f (x2)) .

⇒ g ◦ f : X→ Z is not one to one, contrary to our hypothesis.

Since the assumption that f is not one to one yields a contradiction, it must be false.

Hence, f : X→ Y is one to one.

Thus, if g ◦ f : X→ Z is one to one, then f : X→ Y must be onto to one , but g : Y → Z is not
necessarily one to one.
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24. Given f : X→ Y and g : Y → Z, Suppose that g ◦ f : X→ Z is onto. Is either f or g necessarily
onto?

Claim: f is not necessarily onto.

Proof. Consider f : X→ Y and g: Y → Z as shown below. Note that g ◦ f : X→ Z is onto, as
∀z ∈ Z,∃x ∈ X such that g (f (x)) = z, and yet f : X→ Y is not onto.

X Y Z

a

b

1

2

3

x

y

f g

Claim: g : Y → Z must be onto.

Proof. Let the hypothesis be given. (i.e., suppose that g ◦ f : X→ Z is onto.)Let z ∈ Z be given.

Then ∃x ∈ X such that g (f (x)) = z.

⇒ ∃y ∈ Y (namely y = f (x)), such that g (y) = z.

i.e., Given z ∈ Z, ∃y ∈ Y such that g (y) = z.

Hence, g : Y → Z must be onto.

Thus, if g ◦ f : X→ Z is onto, then g : Y → Z must be onto, but f : X→ Yis not necessarily onto.
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25. A function f : X→ Y has an inverse if and only if it is one to one and onto.

Proof. If f : X→ Y has an inverse then it is one to one and onto.

Let the hypothesis be given. (i.e., suppose that f : X→ Y has an inverse, f−1)

Then: f−1 ◦ f = 1X , and hence, f−1 ◦ f is one to one and onto.

Also: f ◦ f−1 = 1Y , and hence, f ◦ f−1is one to one and onto.

Since f−1 ◦ f is one to one and onto, then by previous exercises (23 and24), f must be one to one, and
f−1 must be onto.

Since f ◦ f−1 is one to one and onto, then by previous exercises (23 and24), f−1 must be one to one,
and f must be onto.

Hence, both f and f−1 are one to one and onto.

If f : X→ Y is one to one and onto, then it has an inverse.

Let the hypothesis be given. (i.e., Suppose that f : X→ Y is one to one and onto.)

Note that since f is onto, for any value of y ∈ Y, there exists an x ∈ X such that f (x) = y.

Since f is one to one, there is only one x ∈ X such that f (x) = y. We’ll call it xy

Thus, we can define f−1 : Y → X by f−1 (y) = xy

We must now check and make sure that f−1 ◦ f = 1X and that f ◦ f−1 = 1Y .

Observe: f−1 ◦ f (xy) = f−1 (f (xy)) = f−1 (y) = xy.

Thus, f−1 ◦ f = 1X

Also: f ◦ f−1 (y) = f
(
f−1 (y)

)
= f (xy) = y

Hence, f has an inverse.

Remark 3 Note that if ∃f : X→ Y that is one to one and onto, then ∃g : Y → X that is one to one and
onto (e.g., f−1)

Remark 4 If ∃f : S → N that is one to one and onto, then ∃g : N→ S that is one to one and onto also.

Thus, to show that a set is denumerable, we can show that ∃g : N→ S that is one to one and onto, or
we can show that ∃f : S → N that is one to one and onto. Either is suffi cient.

Remark 5 Since the composition of one to one and onto functions is also one to one and onto, if a set A
is known to be denumerable, then any set B that can be put into a one to one correspondence with A is also

one to one and onto. (Since A is denumerable, ∃ f : N
one to one−−→
onto A.

Similarly, ∃ g : A
one to one−−→
onto B. Thus, (g ◦ f) : N→ B is one to one and onto.)

The point is this: An alternate way of showing that a set B is denumerable is to exhibit a one to one
correspondence between B and a set A, where A is known to be denumerable.
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26. The set of even natural numbers E = {2, 4, 6, 8, . . .} is denumerable.

Proof. Observe: N = { 1, 2, 3, 4, 5, 6, . . . }
↓ ↓ ↓ ↓ ↓ ↓

E = { 2, 4, 6, 8, 10, 12, . . . }

Define f : N→ E by f (n) = 2n

Clearly from the diagram above, f is one to one and onto. Hence, E is denumerable.

27. The set of odd natural numbers O = {1, 3, 5, 7, . . .} is denumerable.

Proof. Observe: N = { 1, 2, 3, 4, 5, 6, . . . }
↓ ↓ ↓ ↓ ↓ ↓

O = { 1, 3, 5, 7, 9, 11, . . . }

Define f : N→ O by f (n) = 2n− 1.

Clearly from the diagram above, f is one to one and onto. Hence, O is denumerable.

28. The set of integers Z = {0,±1,±2± 3,±4, . . .} is denumerable.

Proof. Observe:

N = { 1, 2, 3, 4, 5, 6, 7, . . . }
f ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
Z = { 0, 1, −1, 2, −2, 3, −3, . . . }

Define f : N→ Z by f (n) =


n
2 if n is even

−n−12 if n is odd

Clearly from the diagram above, f is one to one and onto. Hence, Z is denumerable.

29. The set 5Z = {0,±5,±10± 15,±20, . . .} is denumerable.

Proof. Observe:

N = { 1, 2, 3, 4, 5, 6, 7, . . . }
f ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
5Z = { 0, 5, −5, 10, −10, 15, −15, . . . }

Define f : N→ 5Z by f (n) =


5n
2 if n is even

− 5(n−1)2 if n is odd

Clearly from the diagram above, f is one to one and onto. Hence, 5Z is denumerable.

30. Z ∼ nZ (and consequently, nZ is denumerable)

Proof. Observe: Z = { 0, 1, −1, 2, −2, 3, −3, . . . }
↓ ↓ ↓ ↓ ↓ ↓ ↓

nZ = { 0, n, −n, 2n, −2n, 3n, −3n, . . . }

Define f : Z→ nZ by f (k) = kn

Clearly from the diagram above, f is one to one and onto. Hence, Z ∼nZ, and therefore, nZ is
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denumerable by Remark 5 on page 14.

31. The set of positive rational numbers Q+ is denumerable.

Consider the table of ordered pairs below:

(1, 1) → (1, 2) (1, 3) → (1, 4) (1, 5) → . . .
↙ ↗ ↙ ↗

(2, 1) (2, 2) (2, 3) (2, 4) (2, 5) . . .
↓ ↗ ↙ ↗

(3, 1) (3, 2) (3, 3) (3, 4) (3, 5) . . .
↙ ↗

(4, 1) (4, 2) (4, 3) (4, 4) (4, 5) . . .
↓ ↗

(5, 1) (5, 2) (5, 3) (5, 4) (5, 5) . . .
...

...
...

...
...

If we consider the ordered pair (i, j) in the ith row and jth column to represent the quotient of integers
i
j , then every positive rational number appears in the table at least once. (e.g., the positive rational
number m

n appears in the m
th row and nth column.)

Furthermore, the arrows in the table induce an exhaustive ordering of the positive rational numbers
as follows:

1, 12 , 2, 3,
1
3 ,

1
4 ,

2
3 ,

3
2 , 4, 5,

1
5 , . . .

(Note that we have discarded repetitions of rationals if they occur. e.g., we have discarded (2, 2)
because it is equivalent to (1, 1) which is already on our list.)

Note also that since the positive rationals are ordered, they are in a one to one correspondence with
the natural numbers.

Hence, the positive rational numbers are denumerable.

32. The set of negative rational numbers Q− is denumerable.

Proof. The function f : Q+ → Q− given by f
(
m
n

)
= −mn is clearly one to one and onto.

For if f (x1) = f (x2) ,

Then −x1 = −x2

⇒ x1 = x2, thus f is one to one.

Also, given y ∈ Q−, we can choose x ∈ Q+, given by x = −y.

This yields f (x) = −x = − (−y) = y.

Thus, f is onto.
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33. The union of a denumerable set and a finite set is denumerable (you can assume that the two sets are
disjoint).

Proof. Let A = {a1, a2, . . . , ak} and B = {b1, b2, b3, . . .} .

Then A is finite and B is denumerable.

Observe: N = { 1, 2, 3, . . . , k, k + 1, k + 2, k + 3, . . . }
f ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

(A ∪B) = { a1, a2, a3, . . . , ak b1, b2, b3, . . . }

Define f : N→ (A ∪B) by f (n) =

 an if n ≤ k

bn−k if n > k

Clearly from the diagram above, f is one to one and onto. Hence, (A ∪B) is denumerable.

34. The union of two (disjoint) denumerable sets is denumerable.

Proof. Let A = {a1, a2, a3, . . .} and B = {b1, b2, b3, . . .}

Observe:

N = { 1, 2, 3, 4, 5, 6, . . . }
f ↓ ↓ ↓ ↓ ↓ ↓ ↓

(A ∪B) = { a1, b1, a2, b2, a3, b3, . . . }

Define f : N→ (A ∪B) by f (n) =


an+1

2
if n is odd

bn
2

if n is even

Clearly from the diagram above, f is one to one and onto. Hence, (A ∪B) is denumerable.

35. The union of finitely many (disjoint) denumerable sets is denumerable (i.e., if A1, A2, . . . , An are de-
numerable, then ∪ni=1Ai is denumerable.)

Proof. Suppose that A1, A2, . . . , An are denumerable. Then we can name their elements as follows:

A1 = {a11, a12, a13, . . .}

A2 = {a21, a22, a23, . . .}

...

An = {an1, an2, an3, . . .}

Consider:

N = { 1, 2, n, n+ 1, n+ 2, 2n, 2n+ 1, 2n+ 2, 3n, . . .
f ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
∪ni=1Ai = { a11, a21, . . . , an1, a12, a22 . . . , an2, a13, a23, . . . , an3, . . .

The function f : ∪ni=1Ai→ N given by f (aij) = (j − 1)n+ i as shown above, is clearly one to one and
onto. Hence, ∪ni=1Ai is denumerable.
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Alternatively: Consider the function f : N→∪ni=1 Ai

N = { 1, 2, n, n+ 1, n+ 2, 2n, 2n+ 1, 2n+ 2, 3n, . . .
f ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
∪ni=1Ai = { a11, a21, . . . , an1, a12, a22 . . . , an2, a13, a23, . . . , an3, . . .

The function f : N→ ∪ni=1 Ai as shown above, is clearly one to one and onto. Hence, ∪ni=1Ai is
denumerable.

36. Alternate Proof

(By induction on n.)

Suppose that A1, A2, . . . , An, . . . are denumerable.

(Step 1) Show that our proposition is true for n = 1

∪1i=1Ai = A1, which is denumerable, by hypothesis.

(Step 2) Assume that ∪ki=1Ai is denumerable, and show that ∪k+1i=1Ai is denumerable.

Observe: ∪k+1i=1Ai =
(
∪ki=1Ai

)︸ ︷︷ ︸
d e num e r a b le b y
in d . h y p o t h e s i s

∪Ak+1, which is denumerable, since it is the union of two denumer-

able sets.

Hence, ∪ni=1Ai is denumerable for all n ∈ N.
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37. The union of denumerably many denumerable sets is denumerable (i.e., if A1, A2, . . . , An, . . . are denu-
merable, then ∪∞i=1Ai is countable.) (Again, you can assume that the sets are disjoint.)
Proof. Let sets A1, A2, . . . , An, . . . be denumerable and given by:

A1 = {a11, a12, a13, . . .}
A2 = {a21, a22, a23, . . .}
A3 = {a31, a32, a33, . . .}
...

An = {an1, an2, an3, . . .}
...

(Note that aij is the jth element of the ith set.)

Consider the table of elements from ∪∞i=1Ai listed below:

a11 → a12 a13 → a14 a15 → . . .
↙ ↗ ↙ ↗

a21 a22 a23 a24 a25 . . .
↓ ↗ ↙ ↗
a31 a32 a33 a34 a35 . . .

↙ ↗
a41 a42 a43 a44 a45 . . .
↓ ↗
a51 a52 a53 a54 a55 . . .
...

...
...

...
...

The table contains every element of ∪∞i=1Ai. For example, the jth element of set Ai is given by aij .
This element is found in the ith row and jth column of the table.

Furthermore, the arrows in the table induce an exhaustive ordering of the elements of ∪∞i=1Ai as
follows:

a11, a12, a21, a31, a22, a13, a14, a23, a32, a41, a51, a42, a33, a24, a15, . . .

Note also that since the entire set of elements of ∪∞i=1Ai is ordered, they are in a one to one corre-
spondence with the natural numbers.

Hence, the union of denumerably many denumerable sets is denumerable.

38. The set of rational numbers is denumerable (countable).

Proof. Q+ ∪ {0} is the union of a denumerable set and a finite set, hence it is denumerable.

The entire set of rationals can be expressed as Q = (Q+ ∪ {0}) ∪ Q−, which is the union of two
denumerable sets, hence denumerable.

19



39. The real numbers 0.5 and 0.499999 . . . are equal. (i.e., 0.5 = 0.4999 . . .)

Suppose that x = 0.4999 . . .

Observe: 10x = 4.999 . . .

Hence: 9x = 10x− x = (4.999 . . .)− (0.4999 . . .) = 4.5

i.e., 9x = 4.5

Hence, x = 0.5

But x = 0.4999 . . . also.

Hence 0.5 = 0.4999 . . .

Remark: The previous proof hinges upon the supposition that we know how to add and subtract non-
terminating decimals and that when we do, “things work out”just as we think they should.

40. Alternate Proof

Suppose, for the sake of deriving a contradiction, that 0.5 6= 0.4999 . . .

Then 0.5 > 0.4999 . . . and consequently, ∃ε > 0 such that 0.5− 0.4999 . . . = ε

By the Axiom of Archimedes, ∃n ∈ N such that n > − log (ε)

Observe: Since 0.4999 . . . > 0.499 . . . 9︸ ︷︷ ︸,
n decimal places

It follows that ε = 0.5− 0.4999 . . . < 0.5− 0.499 . . . 9︸ ︷︷ ︸
n decimal places

= 10−n < 10log(ε) = ε

Thus, we have: ε < ε, a contradiction.

Since the assumption that 0.5 6= 0.4999 . . . leads to a contradiction, the assumption must be false.
Hence, 0.5 = 0.4999 . . .

41. The set of real numbers in the interval [0, 1] is uncountable (non-denumerable).

Proof. (By contradiction)

Suppose, for the sake of deriving a contradiction, that the set of real numbers in the interval [0, 1] is
denumerable.

Then there exists an exhaustive ordering of the set of real numbers in the interval [0, 1] .

{x1, x2, x3, . . . , xn, . . .}

Note that this ordering contains ALL of the real numbers in the interval [0, 1] .
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Consider the decimal expansions of these numbers:

x1 = 0.x11x12x13 . . .

x2 = 0.x21x22x23 . . .

x3 = 0.x31x32x33 . . .

...

xn = 0.xn1xn2xn3 . . . xnn . . .

...

Observe: Here, xij is the jth digit past the decimal point in the decimal expansion of the ith real
number xi.

Also: If xi can be written in terminating and non-terminating form (e.g., 0.5 can be written as
0.499999 . . .), then we choose the non-terminating form.

(The number 0 will be represented as 0.000 . . .)

Define y ∈ [0, 1] as follows:

y = 0.y1y2y3 . . . yn... where yi is the ith digit past the decimal point in the decimal expansion
of y.

For n = 1, 2, 3, . . . define the digit yn as follows:

yn =

 5 if xnn 6= 5

1 if xnn = 5

Observe: y ∈ [0, 1] and yet y 6= xn for any n ∈ N.

The reason for this is that, by construction of y, the nth digit of y is different from the nth digit of xn
(i.e., yn 6= xnn) for all n ∈ N.

Hence, y 6= xn ∀n ∈ N.

This contradicts our assumption that our list contains ALL of the real numbers in the interval [0, 1] .

Since the assumption that the set of real numbers in the interval [0, 1] is denumerable led to this con-
tradiction, the assumption must be false. Hence, the numbers in the interval [0, 1] is non-denumerable
(uncountable).
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