MTH 4441 HW #9 - Cosets Fall 2017 | Pat Rossi | Name | |-----------|------| | | | 1. ~ - (a) $(4\mathbb{Z}, +)$ is a subgroup of $(\mathbb{Z}, +)$. Find all of the cosets of $4\mathbb{Z}$. - (b) Create a group table for the Factor Group $(\mathbb{Z}/4\mathbb{Z}, +)$. (i.e., the cosets of $4\mathbb{Z}$ form a group under the operation of "coset addition." Create a group table for the cosets of $4\mathbb{Z}$.) 2. ~ - (a) $(4\mathbb{Z},+)$ is a subgroup of $(2\mathbb{Z},+)$. Find all of the cosets of $4\mathbb{Z}$. - (b) Create a group table for the Factor Group $(2\mathbb{Z}/4\mathbb{Z},+)$. (i.e., the cosets of $4\mathbb{Z}$ form a group under the operation of "coset addition." Create a group table for the cosets of $4\mathbb{Z}$.) 3. ~ - (a) $\langle 3 \rangle$ is a cyclic subgroup of $(\mathbb{Z}_{12}, +)$. Find all of the cosets of $\langle 3 \rangle$. - (b) Create a group table for the Factor Group $(\mathbb{Z}_{12}/\langle 3 \rangle, +)$. (i.e., the cosets of $\langle 3 \rangle$ form a group under the operation of "coset addition." Create a group table for the cosets of $\langle 3 \rangle$.) 4. ~ - (a) $\langle 4 \rangle$ is a cyclic subgroup of $(\mathbb{Z}_{12}, +)$. Find all of the cosets of $\langle 4 \rangle$. - (b) Create a group table for the Factor Group $(\mathbb{Z}_{12}/\langle 4 \rangle, +)$. (i.e., the cosets of $\langle 4 \rangle$ form a group under the operation of "coset addition." Create a group table for the cosets of $\langle 4 \rangle$.) 5. ~ - (a) Show that $\phi: (\mathbb{Z}, +) \to (\mathbb{Z}_4, +)$, given by $\phi(n) = n \mod 4$, is a homomorphism. (The operation in $(\mathbb{Z}_4, +)$ is addition modulo 4.) - (b) Identify $\ker(\phi)$, and compute the left and right cosets of $\ker(\phi)$. - (c) Create a group table for the Factor Group $(\mathbb{Z}/\ker(\phi),+)$. (i.e., the cosets of $\ker(\phi)$ form a group under the operation of "coset addition." Create a group table for the cosets of $\ker(\phi)$.) - (d) Define an isomorphism $\mu: (\mathbb{Z}/\ker(\phi), +) \to (\mathbb{Z}_4, +)$