MTH 1125 (10 am) Test \#1 - Solutions
 FALL 2010

Pat Rossi
Name \qquad

Instructions. Show CLEARLY how you arrive at your answers

1. Compute: $\lim _{x \rightarrow 2} \frac{x^{2}-x-2}{x^{2}+3 x-10}=$
(a) 1. Try plugging in:

$$
\lim _{x \rightarrow 2} \frac{x^{2}-x-2}{x^{2}+3 x-10}=\frac{(2)^{2}-(2)-2}{(2)^{2}+3(2)-10}=\frac{0}{0} \quad \text { No Good - Division by Zero }
$$

2. Try factoring and canceling
$\lim _{x \rightarrow 2} \frac{x^{2}-x-2}{x^{2}+3 x-10}=\lim _{x \rightarrow 2} \frac{(x+1)(x-2)}{(x+5)(x-2)}=\lim _{x \rightarrow 2} \frac{(x+1)}{(x+5)}=\frac{(2)+1}{(2)+5}=\frac{3}{7}$
i.e., $\lim _{x \rightarrow 2} \frac{x^{2}-x-2}{x^{2}+3 x-10}=\frac{3}{7}$
3. Compute: $\lim _{x \rightarrow 2} \frac{2 x+5}{x^{2}+5}=$
(a) 1. Try plugging in:

$$
\begin{aligned}
& \lim _{x \rightarrow 2} \frac{2 x+5}{x^{2}+5}=\frac{2(2)+5}{(2)^{2}+5}=1 \\
& \text { i.e., } \lim _{x \rightarrow 2} \frac{2 x+5}{x^{2}+5}=1
\end{aligned}
$$

3. Compute: $\lim _{x \rightarrow 3} \frac{x+5}{x^{2}-2 x-3}=$
(a) 1. Try plugging in:
$\lim _{x \rightarrow 3} \frac{x+5}{x^{2}-2 x-3}=\frac{(3)+5}{(3)^{2}-2(3)-3}=\frac{8}{0} \quad$ No Good - Division by Zero
4. Try factoring and canceling

No Good - factoring and canceling only works when Step \#1 yields $\frac{0}{0}$.
3. Analyze one-sided limits
$\lim _{x \rightarrow 3^{-}} \frac{x+5}{x^{2}-2 x-3}=\lim _{x \rightarrow 3^{-}} \frac{x+5}{(x+1)(x-3)}=\frac{8}{(4)(-\varepsilon)}=\frac{2}{(-\varepsilon)}=-\infty$

$$
\begin{array}{rl|}
& x \rightarrow 3^{-} \\
\Rightarrow & x<3 \\
\Rightarrow & x-3<0
\end{array}
$$

$\lim _{x \rightarrow 3^{+}} \frac{x+5}{x^{2}-2 x-3}=\lim _{x \rightarrow 3^{+}} \frac{x+5}{(x+1)(x-3)}=\frac{8}{(4)(+\varepsilon)}=\frac{2}{(\varepsilon)}=+\infty$

$$
\begin{array}{rl|}
& x \rightarrow 3^{+} \\
\Rightarrow & x>3 \\
\Rightarrow & x-3>0
\end{array}
$$

Since the one-sided limits are not equal, $\lim _{x \rightarrow 3} \frac{x+5}{x^{2}-2 x-3}$ Does Not Exist.
4. Compute: $\lim _{x \rightarrow 2} \frac{\sqrt{x+7}-3}{x-2}=$
(a) 1. Try plugging in:
$\lim _{x \rightarrow 2} \frac{\sqrt{x+7}-3}{x-2}=\frac{\sqrt{(2)+7}-3}{(2)-2}=0 \quad$ No Good - Division by Zero
2. Try factoring and canceling
$\lim _{x \rightarrow 2} \frac{\sqrt{x+7}-3}{x-2}=\lim _{x \rightarrow 2} \frac{\sqrt{x+7}-3}{x-2} \cdot \frac{\sqrt{x+7}+3}{\sqrt{x+7}+3}=\lim _{x \rightarrow 2} \frac{(\sqrt{x+7})^{2}-(3)^{2}}{(x-2)[\sqrt{x+7}+3]}=$
$\lim _{x \rightarrow 2} \frac{(x+7)-9}{(x-2)[\sqrt{x+7}+3]}=\lim _{x \rightarrow 2} \frac{x-2}{(x-2)[\sqrt{x+7}+3]}=\lim _{x \rightarrow 2} \frac{1}{[\sqrt{x+7}+3]}=$
$\frac{1}{[\sqrt{(2)+7}+3]}=\frac{1}{3+3}=\frac{1}{6}$
i.e., $\lim _{x \rightarrow 2} \frac{\sqrt{x+7}-3}{x-2}=\frac{1}{6}$
5. Compute: $\lim _{x \rightarrow \infty} \frac{5 x^{3}+3 x+2}{5 x^{3}+5 x^{2}+5}=$
$\lim _{x \rightarrow \infty} \frac{5 x^{3}+3 x+2}{5 x^{3}+5 x^{2}+5}=\lim _{x \rightarrow \infty} \frac{5 x^{3}}{5 x^{3}}=\lim _{x \rightarrow \infty} 1=1$
i.e., $\lim _{x \rightarrow \infty} \frac{5 x^{3}+3 x+2}{5 x^{3}+5 x^{2}+5}=1$
6.

$x=$	$f(x)=$
1.5	15.1
1.9	227.8
1.99	1212.3
1.999	21156.3
1.9999	834561.9

$x=$	$f(x)=$
2.5	-15.1
2.1	-227.8
2.01	-1212.3
2.001	-21156.3
2.0001	-834561.9

Based on the information in the table above, do the following:
(a) $\lim _{x \rightarrow 2^{-}} f(x)=+\infty$
(b) $\lim _{x \rightarrow 2^{+}} f(x)=-\infty$
(c) Graph $f(x)$

7. Determine whether $f(x)$ is continuous at the point $x=3$.
$f(x)=\left\{\begin{array}{cc}\frac{x^{2}-2 x-3}{x-3} & \text { for } x<3 \\ 2 x-3 & \text { for } x \geq 3\end{array}\right.$
$f(x)$ is continuous at the point $x=3$ exactly when $\lim _{x \rightarrow 3} f(x)=f(3)$.
We will check this by computing $\lim _{x \rightarrow 3} f(x)$.

Since $f(x)$ is defined differently for $x<3$ than it is for $x>3$, we must compute the one-sided limits in order to compute $\lim _{x \rightarrow 3} f(x)$.
$\lim _{x \rightarrow 3^{-}} f(x)=\lim _{x \rightarrow 3^{-}} \frac{x^{2}-2 x-3}{x-3}=\lim _{x \rightarrow 3^{-}} \frac{(x+1)(x-3)}{(x-3)}=\lim _{x \rightarrow 3^{-}}(x+1)=((3)+1)=4$
$\lim _{x \rightarrow 3^{+}} f(x)=\lim _{x \rightarrow 3^{+}}(2 x-3)=(2(3)-3)=3$

Since the one-sided limits are not equal, $\lim _{x \rightarrow 3} f(x)$ does not exist.
Since $\lim _{x \rightarrow 3} f(x)$ does not exist, $\lim _{x \rightarrow 3} f(x) \neq f(3)$.

Since $\lim _{x \rightarrow 3} f(x) \neq f(3), \quad f(x)$ is NOT continuous at the point, $x=3$.
8. $f(x)=\frac{x^{3}}{x^{2}-4}$. Find the asymptotes and graph

Verticals

Find x-values that cause division by zero.

$$
\begin{aligned}
& \Rightarrow x^{2}-4=0 \\
& \Rightarrow(x+2)(x-2)=0 \\
& \Rightarrow x=-2 \text { and } x=2 \quad \text { possible vertical asymptotes }
\end{aligned}
$$

Compute the one-sided limits

$$
x=-2
$$

$\lim _{x \rightarrow-2^{-}} \frac{x^{3}}{x^{2}-4}=\lim _{x \rightarrow-2^{-}} \frac{x^{3}}{(x+2)(x-2)}=\frac{-8}{(-\varepsilon)(-4)}=\frac{-8}{(\varepsilon)(4)}=\frac{(-2)}{\varepsilon}=-\infty$

$$
\begin{array}{ll}
& x \rightarrow-2^{-} \\
\Rightarrow & x<-2 \\
\Rightarrow & x+2<0
\end{array} \quad \begin{aligned}
& \text { Infinite limits tell us } \\
&
\end{aligned} \quad \begin{aligned}
& \text { that } x=-2 \text { IS a } \\
&
\end{aligned} \quad \text { vertical asymptote }
$$

$\lim _{x \rightarrow-2^{+}} \frac{x^{3}}{x^{2}-4}=\lim _{x \rightarrow-2^{+}} \frac{x^{3}}{(x+2)(x-2)}=\frac{-8}{(\varepsilon)(-4)}=\frac{8}{(\varepsilon)(4)}=\frac{(2)}{\varepsilon}=+\infty$

$$
\begin{aligned}
& x \rightarrow-2^{+} \\
\Rightarrow & x>-2 \\
\Rightarrow & x+2>0
\end{aligned}
$$

$$
x=2
$$

$\lim _{x \rightarrow 2^{-}} \frac{x^{3}}{x^{2}-4}=\lim _{x \rightarrow 2^{-}} \frac{x^{3}}{(x+2)(x-2)}=\frac{8}{(4)(-\varepsilon)}=\frac{(-2)}{\varepsilon}=-\infty$

$$
\begin{array}{ll}
& x \rightarrow 2^{-} \\
\Rightarrow & x<2 \\
\Rightarrow & x-2<0
\end{array}
$$

Infinite limits tell us that $x=2$ IS a vertical asymptote
$\lim _{x \rightarrow 2^{+}} \frac{x^{3}}{x^{2}-4}=\lim _{x \rightarrow 2^{+}} \frac{x^{3}}{(x+2)(x-2)}=\frac{8}{(4)(\varepsilon)}=\frac{(2)}{\varepsilon}=+\infty$

$$
\begin{aligned}
& x \rightarrow 2^{+} \\
\Rightarrow & x>2 \\
\Rightarrow & x-2>0
\end{aligned}
$$

Compute limits as $x \rightarrow-\infty$ and $x \rightarrow+\infty$.
$\lim _{x \rightarrow-\infty} \frac{x^{3}}{x^{2}-4}=\lim _{x \rightarrow-\infty} \frac{x^{3}}{x^{2}}=\lim _{x \rightarrow-\infty} x=-\infty$
Limits are not finite and constant. Hence, there is NO horizontal asymptote
$\lim _{x \rightarrow+\infty} \frac{x^{3}}{x^{2}-4}=\lim _{x \rightarrow+\infty} \frac{x^{3}}{x^{2}}=\lim _{x \rightarrow+\infty} x=+\infty$

Graph $f(x)=\frac{x^{3}}{x^{2}-4}$

