MTH 1125 (10 am) Test #1 - Solutions

Fall 2010

Pat Rossi

Name _____

Instructions. Show CLEARLY how you arrive at your answers

- 1. Compute: $\lim_{x\to 2} \frac{x^2 x 2}{x^2 + 3x 10} =$
 - (a) 1. Try plugging in:

$$\lim_{x \to 2} \frac{x^2 - x - 2}{x^2 + 3x - 10} = \frac{(2)^2 - (2) - 2}{(2)^2 + 3(2) - 10} = \frac{0}{0}$$

No Good - Division by Zero

2. Try factoring and canceling

$$\lim_{x \to 2} \frac{x^2 - x - 2}{x^2 + 3x - 10} = \lim_{x \to 2} \frac{(x+1)(x-2)}{(x+5)(x-2)} = \lim_{x \to 2} \frac{(x+1)}{(x+5)} = \frac{(2)+1}{(2)+5} = \frac{3}{7}$$

i.e.,
$$\lim_{x \to 2} \frac{x^2 - x - 2}{x^2 + 3x - 10} = \frac{3}{7}$$

- 2. Compute: $\lim_{x\to 2} \frac{2x+5}{x^2+5} =$
 - (a) 1. Try plugging in:

$$\lim_{x \to 2} \frac{2x+5}{x^2+5} = \frac{2(2)+5}{(2)^2+5} = 1$$

i.e.,
$$\lim_{x \to 2} \frac{2x+5}{x^2+5} = 1$$

- 3. Compute: $\lim_{x\to 3} \frac{x+5}{x^2-2x-3} =$
 - (a) 1. Try plugging in:

$$\lim_{x \to 3} \frac{x+5}{x^2 - 2x - 3} = \frac{(3)+5}{(3)^2 - 2(3) - 3} = \frac{8}{0}$$
 No Good - Division by Zero

2. Try factoring and canceling

No Good - factoring and canceling only works when Step #1 yields $\frac{0}{0}$.

3. Analyze one-sided limits $\lim_{x \to 3^{-}} \frac{x+5}{x^2-2x-3} = \lim_{x \to 3^{-}} \frac{x+5}{(x+1)(x-3)} = \frac{8}{(4)(-\varepsilon)} = \frac{2}{(-\varepsilon)} = -\infty$ $\begin{bmatrix} x \to 3^{-} \\ \Rightarrow & x < 3 \\ \Rightarrow & x - 3 < 0 \end{bmatrix}$ $\lim_{x \to 3^{+}} \frac{x+5}{x^2-2x-3} = \lim_{x \to 3^{+}} \frac{x+5}{(x+1)(x-3)} = \frac{8}{(4)(+\varepsilon)} = \frac{2}{(\varepsilon)} = +\infty$ $\begin{bmatrix} x \to 3^{+} \\ \Rightarrow & x > 3 \\ \Rightarrow & x - 3 > 0 \end{bmatrix}$

Since the one-sided limits are not equal, $\lim_{x\to 3} \frac{x+5}{x^2-2x-3}$ Does Not Exist.

- 4. Compute: $\lim_{x \to 2} \frac{\sqrt{x+7}-3}{x-2} =$
 - (a) 1. Try plugging in:

$$\lim_{x \to 2} \frac{\sqrt{x+7}-3}{x-2} = \frac{\sqrt{(2)+7}-3}{(2)-2} = 0$$
 No Good - Division by Zero

2. Try factoring and canceling

$$\lim_{x \to 2} \frac{\sqrt{x+7}-3}{x-2} = \lim_{x \to 2} \frac{\sqrt{x+7}-3}{x-2} \cdot \frac{\sqrt{x+7}+3}{\sqrt{x+7}+3} = \lim_{x \to 2} \frac{(\sqrt{x+7})^2 - (3)^2}{(x-2)[\sqrt{x+7}+3]} = \lim_{x \to 2} \frac{1}{[\sqrt{x+7}+3]} = \lim_{x \to 2} \frac{x-2}{(x-2)[\sqrt{x+7}+3]} = \lim_{x \to 2} \frac{1}{[\sqrt{x+7}+3]} = \lim_{x \to 2} \frac{1}{[\sqrt{x$$

5. Compute: $\lim_{x \to \infty} \frac{5x^3 + 3x + 2}{5x^3 + 5x^2 + 5} =$

$$\lim_{x \to \infty} \frac{5x^3 + 3x + 2}{5x^3 + 5x^2 + 5} = \lim_{x \to \infty} \frac{5x^3}{5x^3} = \lim_{x \to \infty} 1 = 1$$

i.e.,
$$\lim_{x \to \infty} \frac{5x^3 + 3x + 2}{5x^3 + 5x^2 + 5} = 1$$

6.

x =	$f\left(x\right) =$	x =	$f\left(x\right) =$
1.5	15.1	2.5	-15.1
1.9	227.8	2.1	-227.8
1.99	1212.3	2.01	-1212.3
1.999	21156.3	2.001	-21156.3
1.9999	834561.9	2.0001	-834561.9

Based on the information in the table above, do the following:

- (a) $\lim_{x \to 2^{-}} f(x) = +\infty$
- (b) $\lim_{x \to 2^+} f(x) = -\infty$
- (c) Graph f(x)

7. Determine whether f(x) is continuous at the point x = 3.

$$f(x) = \begin{cases} \frac{x^2 - 2x - 3}{x - 3} & \text{for } x < 3\\ 2x - 3 & \text{for } x \ge 3 \end{cases}$$

f(x) is continuous at the point x = 3 exactly when $\lim_{x\to 3} f(x) = f(3)$.

We will check this by computing $\lim_{x\to 3} f(x)$.

Since f(x) is defined differently for x < 3 than it is for x > 3, we must compute the one-sided limits in order to compute $\lim_{x\to 3} f(x)$.

$$\lim_{x \to 3^{-}} f(x) = \lim_{x \to 3^{-}} \frac{x^2 - 2x - 3}{x - 3} = \lim_{x \to 3^{-}} \frac{(x + 1)(x - 3)}{(x - 3)} = \lim_{x \to 3^{-}} (x + 1) = ((3) + 1) = 4$$

 $\lim_{x \to 3^{+}} f(x) = \lim_{x \to 3^{+}} (2x - 3) = (2(3) - 3) = 3$

Since the one-sided limits are not equal, $\lim_{x\to 3} f(x)$ does not exist.

Since $\lim_{x\to 3} f(x)$ does not exist, $\lim_{x\to 3} f(x) \neq f(3)$.

Since $\lim_{x\to 3} f(x) \neq f(3)$, f(x) is NOT continuous at the point, x = 3.

8. $f(x) = \frac{x^3}{x^2-4}$. Find the asymptotes and graph

Verticals

Find x-values that cause division by zero.

$$\Rightarrow x^{2} - 4 = 0$$

$$\Rightarrow (x + 2) (x - 2) = 0$$

$$\Rightarrow x = -2 \text{ and } x = 2 \qquad possible \text{ vertical asymptotes}$$

Compute the one-sided limits

 $\begin{array}{c} x \rightarrow -2^{-} \\ \Rightarrow & x < -2 \\ \Rightarrow & x + 2 < 0 \end{array}$

$$x = -2$$

 $\lim_{x \to -2^{-}} \frac{x^3}{x^2 - 4} = \lim_{x \to -2^{-}} \frac{x^3}{(x + 2)(x - 2)} = \frac{-8}{(-\varepsilon)(-4)} = \frac{-8}{(\varepsilon)(4)} = \frac{(-2)}{\varepsilon} = -\infty$

Infinite limits tell us that x = -2 IS a vertical asymptote

$$\lim_{x \to -2^+} \frac{x^3}{x^2 - 4} = \lim_{x \to -2^+} \frac{x^3}{(x + 2)(x - 2)} = \frac{-8}{(\varepsilon)(-4)} = \frac{8}{(\varepsilon)(4)} = \frac{(2)}{\varepsilon} = +\infty$$
$$\begin{bmatrix} x \to -2^+ \\ \Rightarrow & x > -2 \\ \Rightarrow & x + 2 > 0 \end{bmatrix}$$

x = 2

$$\lim_{x \to 2^-} \frac{x^3}{x^2 - 4} = \lim_{x \to 2^-} \frac{x^3}{(x+2)(x-2)} = \frac{8}{(4)(-\varepsilon)} = \frac{(-2)}{\varepsilon} = -\infty$$

$$x \to 2^-$$

$$\Rightarrow x < 2$$

$$\Rightarrow x - 2 < 0$$

Infinite limits tell us that x = 2 IS a vertical asymptote

$$\lim_{x \to 2^+} \frac{x^3}{x^2 - 4} = \lim_{x \to 2^+} \frac{x^3}{(x + 2)(x - 2)} = \frac{8}{(4)(\varepsilon)} = \frac{(2)}{\varepsilon} = +\infty$$

$$\boxed{\begin{array}{c} x \to 2^+ \\ \Rightarrow & x > 2 \\ \Rightarrow & x - 2 > 0 \end{array}}$$

Horizontals

Compute limits as $x \to -\infty$ and $x \to +\infty$.

 $\lim_{x \to -\infty} \frac{x^3}{x^2 - 4} = \lim_{x \to -\infty} \frac{x^3}{x^2} = \lim_{x \to -\infty} x = -\infty$

Limits are not *finite* and *constant*. Hence, there is NO horizontal asymptote

$$\lim_{x \to +\infty} \frac{x^3}{x^2 - 4} = \lim_{x \to +\infty} \frac{x^3}{x^2} = \lim_{x \to +\infty} x = +\infty$$

Graph $f(x) = \frac{x^3}{x^2 - 4}$

