MTH 1126 Practice Test \#5 - Solutions

FALL 2015
Pat Rossi
Name \qquad

Instructions. In exercises 1-9 determine whether the given series converges or diverges.

1. $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{n^{2}}$

The series is alternating.
(a) $\frac{1}{n^{2}}>\frac{1}{(n+1)^{2}}$ so $a_{n}>a_{n+1}$
(b) $\lim _{n \rightarrow \infty} \frac{1}{n^{2}}=0$, so $\lim _{n \rightarrow \infty} a_{n}=0$

The series converges by the alternating series test.
i.e., $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{n^{2}}$ converges by the Alternating Series Test.
2. $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{(2 n)!}$

The series is alternating.
(a) $\frac{1}{(2 n)!}>\frac{1}{[2(n+1)]!}$ because $2(n+1)!>(2 n)!$. So $a_{n}>a_{n+1}$
(b) $\lim _{n \rightarrow \infty} \frac{1}{(2 n)!}=0$, so $\lim _{n \rightarrow \infty} a_{n}=0$

The series converges by the alternating series test.
i.e., $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{(2 n)!}$ converges by the Alternating Series Test.
3. $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{n+1}{n+4}$

This series is alternating.
However, $\lim _{n \rightarrow \infty} \frac{n+1}{n+4}=1 \neq 0$. This means that $\lim _{n \rightarrow \infty} a_{n} \neq 0$.
Therefore, the series diverges.
i.e., $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{n+1}{n+4}$ diverges because $a_{n} \nrightarrow 0$
4. $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{\ln (n+2)}$

The series is alternating.
(a) $\frac{1}{\ln (n+2)}>\frac{1}{\ln [(n+1)+2]} \quad$ because $\ln [(n+1)+2]=\ln (n+3)>\ln (n+2)$.
(Because $\ln (x)$ is increasing. We know this beacuse of what the graph of $\ln (x)$ looks like.)

$$
\Rightarrow a_{n}>a_{n+1}
$$

(b) $\lim _{n \rightarrow \infty} \frac{1}{\ln (n+2)}=0$, so $\lim _{n \rightarrow \infty} a_{n}=0$

Therefore, the series converges by the alternating series test.
i.e., $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{\ln (n+2)}$ converges by the Alternating Series Test.
5. $\sum_{n=1}^{\infty} \frac{n!}{(2 n)!}$

We will get a lot of the factors in numerator and denominator to cancel if we use the Ratio Test, so let's use it.

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| & =\lim _{n \rightarrow \infty}\left|\frac{\frac{(n+1)!}{\frac{12(n+1)!}{n!}}}{\frac{n!}{(2 n)!}}\right|=\lim _{n \rightarrow \infty} \frac{(n+1)!}{[2(n+1)]!} \cdot \frac{(2 n)!}{n!}=\lim _{n \rightarrow \infty} \frac{(n+1)!}{(2 n+2)!} \cdot \frac{(2 n)!}{n!} \\
& =\lim _{n \rightarrow \infty} \frac{(n+1) \cdot n!}{(2 n+2)(2 n+1)(2 n)!} \cdot \frac{(2 n)!}{n!}=\lim _{n \rightarrow \infty} \frac{n+1}{(2 n+2)(2 n+1)}=\lim _{n \rightarrow \infty} \frac{n+1}{4 n^{2}+6 n+2}=0
\end{aligned}
$$

So $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|<1$. By the Ratio Test, the series converges.
i.e., $\sum_{n=1}^{\infty} \frac{n!}{(2 n)!}$ converges by the Ratio Test.
6. $\sum_{n=1}^{\infty}(-1)^{n} \frac{(2 n-1)!}{e^{n}}$

Again, if we use the Ratio Test, a lot of factors of a_{n} and a_{n+1} will cancel.

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| & =\lim _{n \rightarrow \infty} \left\lvert\, \frac{(-1)^{n+1} \frac{(2(n+1)-1)!}{e^{n+1}}}{(-1)^{n} \frac{\frac{2 n-1)!}{e^{n}}}{(2 n)} \left\lvert\,=\lim _{n \rightarrow \infty} \frac{(2 n+1)!}{e^{n+1}} \cdot \frac{e^{n}}{(2 n-1)!}\right.}\right. \\
& =\lim _{n \rightarrow \infty} \frac{(2 n+1)(2 n)(2 n-1)!}{e \cdot e^{n}} \cdot \frac{e^{n}}{(2 n-1)!}=\lim _{n \rightarrow \infty} \frac{(2 n+1)(2 n)}{e}=\infty
\end{aligned}
$$

So $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|>1$. By the Ratio Test, the series diverges.

$$
\text { i.e., } \sum_{n=1}^{\infty}(-1)^{n} \frac{(2 n-1)!}{e^{n}} \text { diverges by the Ratio Test. }
$$

7. $\sum_{n=1}^{\infty} n^{2}\left(\frac{3}{7}\right)^{n}$

Since the main feature of a_{n} is something raised to the $n^{\text {th }}$ power, we can get rid of the exponent by using the $n^{\text {th }}$ root test, so let's use it!

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \sqrt[n]{a_{n}} & =\lim _{n \rightarrow \infty} \sqrt[n]{n^{2}\left(\frac{3}{7}\right)^{n}}=\lim _{n \rightarrow \infty} \sqrt[n]{n^{2}} \sqrt[n]{\left(\frac{3}{7}\right)^{n}}=\lim _{n \rightarrow \infty} \sqrt[n]{n^{2}}\left(\frac{3}{7}\right)=\left(\frac{3}{7}\right) \lim _{n \rightarrow \infty} \sqrt[n]{n^{2}} \\
& =\left(\frac{3}{7}\right) \lim _{n \rightarrow \infty}(\sqrt[n]{n})^{2}=\underbrace{\left(\frac{3}{7}\right)\left(\lim _{n \rightarrow \infty} \sqrt[n]{n}\right)^{2}=\frac{3}{7} \cdot 1}_{\text {Recall: } \lim _{n \rightarrow \infty} \sqrt[n]{n}=1}=\frac{3}{7}
\end{aligned}
$$

Since $\lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}=\frac{3}{7}<1$, The series converges by the $n^{t h}$ root test.
i.e., $\sum_{n=1}^{\infty} n^{2}\left(\frac{3}{7}\right)^{n}$ converges by the $n^{\text {th }}$ Root Test.
8. $\sum_{n=1}^{\infty}\left(\frac{1}{2}+\frac{1}{n}\right)^{n}$

Again, the main feature of a_{n} is something raised to the $n^{\text {th }}$ power, so let's use the $n^{\text {th }}$ root test.
$\lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}=\lim _{n \rightarrow \infty} \sqrt[n]{\left(\frac{1}{2}+\frac{1}{n}\right)^{n}}=\lim _{n \rightarrow \infty}\left(\frac{1}{2}+\frac{1}{n}\right)=\frac{1}{2}$
Since $\lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}=\frac{1}{2}<1$, the series converges by the $n^{\text {th }}$ root test.
i.e., $\sum_{n=1}^{\infty}\left(\frac{1}{2}+\frac{1}{n}\right)^{n}$ converges by the $n^{t h}$ Root Test.
9. $\sum_{n=1}^{\infty} n^{n}\left(\frac{3}{5}\right)^{n}$

Using the $n^{\text {th }}$ root test, we have:
$\lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}=\lim _{n \rightarrow \infty} \sqrt[n]{n^{n}\left(\frac{3}{5}\right)^{n}}=\lim _{n \rightarrow \infty} \sqrt[n]{n^{n}} \sqrt[n]{\left(\frac{3}{5}\right)^{n}}=\lim _{n \rightarrow \infty} n\left(\frac{3}{5}\right)=\infty$
Since $\lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}=\infty>1$, The series diverges by the $n^{\text {th }}$ root test.
i.e., $\sum_{n=1}^{\infty} n^{n}\left(\frac{3}{5}\right)^{n}$ diverges by the $n^{t h}$ Root Test.

In exercises 10-12, determine whether the given series is divergent, conditionally convergent, or absolutely convergent.
10. $\sum_{n=1}^{\infty}(-1)^{n} \frac{2^{n}}{n!}$

Consider $\sum_{n=1}^{\infty}\left|a_{n}\right|=\sum_{n=1}^{\infty} \frac{2^{n}}{n!}$.
Using the Ratio Test, we have:

Since $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=0<1$, the series $\sum_{n=1}^{\infty} \frac{2^{n}}{n!}$ converges.
Thus, the series $\sum_{n=1}^{\infty}(-1)^{n} \frac{2^{n}}{n!}$ converges absolutely.
i.e., $\sum_{n=1}^{\infty}(-1)^{n} \frac{2^{n}}{n!}$ converges absolutely.
11. $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{\ln (n+1)}$

Consider $\sum_{n=1}^{\infty}\left|a_{n}\right|=\sum_{n=1}^{\infty}\left|(-1)^{n+1} \frac{1}{\ln (n+1)}\right|=\sum_{n=1}^{\infty} \frac{1}{\ln (n+1)}$
It is helpful for us to know that $\ln (x)<x$. This can be seen by looking at the graphs of $y=x$ and $y=\ln (x)$.

$$
y=x \text { and } y=\ln (x)
$$

Since $\ln (x)<x$, it follows that $\ln (x+1)<x+1$, and hence, $\frac{1}{x+1}<\frac{1}{\ln (x+1)}$.
From this, we see that $\frac{1}{n+1}<\frac{1}{\ln (n+1)}$.
It follows that $\sum_{n=1}^{\infty} \frac{1}{\ln (n+1)}$ diverges by direct comparison to $\sum_{n=1}^{\infty} \frac{1}{n+1}$ which is the harmonic series, with first term $\frac{1}{2}$. Therefore, the series does not converge absolutely.

However, the original series $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{\ln (n+1)}$ is alternating.
(a) $\frac{1}{\ln (n+1)}>\frac{1}{\ln [(n+1)+1]}$, so $a_{n}>a_{n+1}$
(b) $\lim _{n \rightarrow \infty} \frac{1}{\ln (n+1)}=0$, so $\lim _{n \rightarrow \infty} a_{n}=0$.

Therefore, $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{\ln (n+1)}$ converges by the alternating series test, and the series $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{\ln (n+1)}$ converges conditionally.
i.e., $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{\ln (n+1)}$ converges conditionally.
12. $\sum_{n=1}^{\infty}(-1)^{n} \frac{n!}{(2 n)!}$

Consider $\sum_{n=1}^{\infty}\left|a_{n}\right|=\sum_{n=1}^{\infty}\left|(-1)^{n} \frac{n!}{(2 n)!}\right|=\sum_{n=1}^{\infty} \frac{n!}{(2 n)!}$
Using the Ratio Test, we have:

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| & =\lim _{n \rightarrow \infty}\left|\frac{\frac{(n+1)!}{(2(n+1)!}}{(2 n)!}\right|=\lim _{n \rightarrow \infty} \frac{(n+1)!}{(2(n+1))!} \cdot \frac{(2 n)!}{n!}=\lim _{n \rightarrow \infty} \frac{(n+1)!}{(2 n+2)!} \cdot \frac{(2 n)!}{n!} \\
& =\lim _{n \rightarrow \infty} \frac{(n+1) n!}{(2 n+2)(2 n+1)(2 n)!} \cdot \frac{(2 n)!}{n!}=\lim _{n \rightarrow \infty} \frac{n+1}{4 n^{2}+6 n+2}=0
\end{aligned}
$$

Since $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|<1$, the series $\sum_{n=1}^{\infty} \frac{n!}{(2 n)!}$ converges by the Ratio Test. Therefore, the series $\sum_{n=1}^{\infty}(-1)^{n} \frac{n!}{(2 n)!}$ converges absolutely.
i.e., $\sum_{n=1}^{\infty}(-1)^{n} \frac{n!}{(2 n)!}$ converges absolutely.

In problems 13-15 simplify (identify) the given expression.
13. $\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\ldots$
$e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\ldots$
This should be memorized!

$$
\text { i.e., } \sum_{n=0}^{\infty} \frac{x^{n}}{n!}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\ldots=e^{x}
$$

14. $\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\ldots$
$\sin (x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\ldots$
This should be memorized!

$$
\text { i.e., } \sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\ldots=\sin (x)
$$

15. $\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!}=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\ldots$
$\cos (x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!}=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\ldots$
This should be memorized!

$$
\text { i.e., } \sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!}=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\ldots=\cos (x)
$$

16. Find the Taylor Series for $f(x)=\sin (x)$ centered at $c=\frac{\pi}{4}$.

Use: $f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(x)}{n!}(x-c)^{n}$ with $c=\frac{\pi}{4}$. First, we compute the first few derivatives of $f(x) \cdot f^{(0)}(x)=f(x)=\sin (x) \Rightarrow f^{(0)}\left(\frac{\pi}{4}\right)=\sin \left(\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}$

$$
f^{(1)}(x)=f^{\prime}(x)=\cos (x) \Rightarrow f^{(1)}\left(\frac{\pi}{4}\right)=\cos \left(\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}
$$

$$
f^{(2)}(x)=f^{\prime \prime}(x)=-\sin (x) \Rightarrow f^{(2)}\left(\frac{\pi}{4}\right)=-\sin \left(\frac{\pi}{4}\right)=-\frac{\sqrt{2}}{2}
$$

$$
f^{(3)}(x)=f^{\prime \prime \prime}(x)=-\cos (x) \Rightarrow f^{(3)}\left(\frac{\pi}{4}\right)=-\cos \left(\frac{\pi}{4}\right)=-\frac{\sqrt{2}}{2}
$$

$$
f^{(4)}(x)=\sin (x) \Rightarrow f^{(4)}\left(\frac{\pi}{4}\right)=\sin \left(\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}
$$

Therefore:

$$
\begin{aligned}
f(x)=\sin (x) & =\sum_{n=0}^{\infty} \frac{f^{(n)}(x)}{n!}(x-c)^{n}=\frac{\frac{\sqrt{2}}{2}}{0!}\left(x-\frac{\pi}{4}\right)^{0}+\frac{\frac{\sqrt{2}}{2}}{1!}\left(x-\frac{\pi}{4}\right)^{1}+\frac{-\frac{\sqrt{2}}{2}}{2!}\left(x-\frac{\pi}{4}\right)^{2}+\frac{-\frac{\sqrt{2}}{2}}{3!}\left(x-\frac{\pi}{4}\right)^{3} \\
& +\frac{\sqrt{2}}{4!}\left(x-\frac{\pi}{4}\right)^{4}+\ldots \\
& =\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}\left(x-\frac{\pi}{4}\right)-\frac{\sqrt{2}}{4}\left(x-\frac{\pi}{4}\right)^{2}-\frac{\sqrt{2}}{12}\left(x-\frac{\pi}{4}\right)^{3}+\frac{\sqrt{2}}{48}\left(x-\frac{\pi}{4}\right)^{4}+\ldots
\end{aligned}
$$

$$
\text { i.e., } \sin (x)=\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}\left(x-\frac{\pi}{4}\right)-\frac{\sqrt{2}}{4}\left(x-\frac{\pi}{4}\right)^{2}-\frac{\sqrt{2}}{12}\left(x-\frac{\pi}{4}\right)^{3}+\frac{\sqrt{2}}{48}\left(x-\frac{\pi}{4}\right)^{4}+\ldots
$$

17. Find the Taylor Series for $f(x)=\frac{1}{x}$ centered at $c=2$

First, we compute the first few derivatives of $f(x)$.
$f^{(0)}(x)=f(x)=\frac{1}{x} \Rightarrow f^{(0)}(2)=\frac{1}{2}$
$f^{(1)}(x)=f^{\prime}(x)=-\frac{1}{x^{2}} \Rightarrow f^{(1)}(2)=-\frac{1}{4}$
$f^{(2)}(x)=f^{\prime \prime}(x)=\frac{2}{x^{3}} \Rightarrow f^{(2)}(2)=\frac{2}{8}=\frac{1}{4}$
$f^{(3)}(x)=f^{\prime \prime \prime}(x)=-\frac{6}{x^{4}} \Rightarrow f^{(3)}(2)=-\frac{6}{16}=-\frac{3}{8}$
$f^{(4)}(x)=\frac{24}{x^{5}} \Rightarrow f^{(4)}(2)=\frac{24}{32}=\frac{3}{4}$
Therefore,
$f(x)=\frac{1}{x}=\sum_{n=0}^{\infty} \frac{f^{(n)}(x)}{n!}(x-c)^{n}=\frac{\frac{1}{2}}{0!}+\frac{-\frac{1}{4}}{1!}(x-2)^{1}+\frac{\frac{1}{4}}{2!}(x-2)^{2}+\frac{-\frac{3}{8}}{3!}(x-2)^{3}+\frac{\frac{3}{4}}{4!}(x-2)^{4}+\ldots$

$$
=\frac{1}{2}-\frac{1}{4}(x-2)+\frac{1}{8}(x-2)^{2}-\frac{1}{16}(x-2)^{3}+\frac{1}{32}(x-c)^{4}+\ldots
$$

i.e., $\frac{1}{x}=\frac{1}{2}-\frac{1}{4}(x-2)+\frac{1}{8}(x-2)^{2}-\frac{1}{16}(x-2)^{3}+\frac{1}{32}(x-c)^{4}+\ldots$
18. Find the Taylor Series for $f(x)=\ln (1+x)$ centered at $c=0$.

First, we compute the first few derivatives of $f(x)$.
$f^{(0)}(x)=f(x)=\ln (1+x) \Rightarrow f^{(0)}(0)=\ln (1)=0$
$f^{(1)}(x)=f^{\prime}(x)=(1+x)^{-1} \Rightarrow f^{(1)}(0)=1=0$!
$f^{(2)}(x)=f^{\prime \prime}(x)=-(1+x)^{-2} \Rightarrow f^{(2)}(0)=-1=-1$!
$f^{(3)}(x)=f^{\prime \prime \prime}(x)=2(1+x)^{-3} \Rightarrow f^{(3)}(0)=2=2$!
$f^{(4)}(x)=-2 \cdot 3 \cdot(1+x)^{-4} \Rightarrow f^{(4)}(0)=-2 \cdot 3=-3$!
Therefore:

$$
\begin{aligned}
& f(x)=\frac{1}{x}=\sum_{n=0}^{\infty} \frac{f^{(n)}(x)}{n!}(x-c)^{n}=\frac{0}{0!}+\frac{0!}{1!}(x-0)^{1}+\frac{-1!}{2!}(x-0)^{2}+\frac{2!}{3!}(x-0)^{3}+\frac{-3!}{4!}(x-0)^{4}+\ldots \\
& \quad=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\ldots+\frac{(-1)^{n+1} x^{n}}{n}+\ldots \\
& \text { i.e., } \ln (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\ldots+\frac{(-1)^{n+1} x^{n}}{n}+\ldots
\end{aligned}
$$

In problems 19-20 use a known Taylor Series expansion to derive an expansion for the given function.
19. $f(x)=\frac{1-\cos (x)}{x} ; x \neq 0$.

Recall: $\cos (x)=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\ldots$
Therefore,
$1-\cos (x)=1-\left(1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\ldots\right)=\frac{x^{2}}{2!}-\frac{x^{4}}{4!}+\frac{x^{6}}{6!}-\ldots$
and consequently:

$$
\begin{aligned}
\frac{1-\cos (x)}{x} & =\frac{1}{x}\left(\frac{x^{2}}{2!}-\frac{x^{4}}{4!}+\frac{x^{6}}{6!}-\ldots\right)=\frac{x}{2!}-\frac{x^{3}}{4!}+\frac{x^{5}}{6!}-\ldots \\
& =\sum_{n=1}^{\infty}(-1)^{n+1} \frac{x^{2 n-1}}{(2 n)!}
\end{aligned}
$$

$$
\text { i.e., } \frac{1-\cos (x)}{x}=\sum_{n=1}^{\infty}(-1)^{n+1} \frac{x^{2 n-1}}{(2 n)!}=\frac{x}{2!}-\frac{x^{3}}{4!}+\frac{x^{5}}{6!}-\ldots
$$

20. $f(x)=\cos \left(x^{2}\right)$

Let $z=x^{2}$
Recall: $\cos (z)=1-\frac{z^{2}}{2!}+\frac{z^{4}}{4!}-\frac{z^{6}}{6!}+\ldots$
Therefore, $\cos \left(x^{2}\right)=\cos (z)=1-\frac{z^{2}}{2!}+\frac{z^{4}}{4!}-\frac{z^{6}}{6!}+\ldots=1-\frac{\left(x^{2}\right)^{2}}{2!}+\frac{\left(x^{2}\right)^{4}}{4!}-\frac{\left(x^{2}\right)^{6}}{6!}+\ldots=1-\frac{x^{4}}{2!}+\frac{x^{8}}{4!}-\frac{x^{12}}{6!}+\ldots$
i.e., $\cos \left(x^{2}\right)=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{4 n}}{(2 n)!}=1-\frac{x^{4}}{2!}+\frac{x^{8}}{4!}-\frac{x^{12}}{6!}+\ldots$

