MTH 3318 - Test #2 - Solutions

 $\mathrm{Fall}\ 2024$

Pat Rossi

Name _____

Instructions. Fully document your work.

- 1. In exercises 1.a 1.d, let p be the statement: "It is warm out," and let q be the statement: "We will go golfing." Write each statement in symbolic form.
 - (a) If it is warm out, then we will go golfing.
 p → q
 (b) It will be warm out or v we will not go golfing.
 p∨ ~ q
 (c) Being warm out is a necessary and sufficient condition for me to go golfing.
 - (c) $\underbrace{\text{Being warm out}}_{p} \underbrace{\text{is a necessary and sufficient condition for}}_{\phi} \underbrace{\text{me to go goinng}}_{q}$

(d) It will be warm out if I go golfing.

$$p \leftarrow q \text{ or } q \rightarrow p$$

- 2. In exercises 2.a 2.d, let p be the statement: "I will get a job," and let q be the statement: "I will be broke." Write each statement in words.
 - (a) p ∨ q
 I will get a job or I will be broke.
 (b) p ∧ q
 I will get a job and I will be broke.
 (c) p → ~ q
 If I get a job, then I will not be broke.
 (d) ~ p ↔ ~ q
 I will not get a job if and only if I am not broke.

3. In problems 3.a - 3.d, determine whether the given propositions are True or False:

(a) If
$$8 > 3$$
, then $8 > 10$.
 $T \to F = F$
(b) If $8 > 3$, then $8 > 5$.
 $T \to T = T$
(c) If $8 > 10$, then $2 + 4 = 6$.
 $F \to T = T$
(d) If $2 + 2 = 5$, then $8 > 10$.

 $F \rightarrow F = T$

- 4. In exercises 4.a-4.b construct a truth table for the statement given.
 - (a) $(p \lor q) \longleftrightarrow r$

p	q	r	$(p \lor q)$	$(p \lor q) \longleftrightarrow r$
Т	Т	Т	Т	Т
Т	Т	F	Т	F
Т	F	Т	Т	Т
Т	F	F	Т	F
F	Т	Т	Т	Т
F	Т	F	Т	F
F	F	Т	F	F
F	F	F	F	Т

(b)
$$\sim p \land (q \to (\sim r))$$

p	q	r	$\sim p$	$\sim r$	$(q \rightarrow \tilde{r})$	$ \sim p \wedge (q \to (\sim r))$
Т	Т	Т	F	F	F	F
Т	Т	F	F	Т	Т	F
Т	F	Т	F	F	Т	F
Т	F	F	F	Т	Т	F
F	Т	Т	Т	F	F	F
F	Т	F	Т	Т	Т	Т
F	F	Т	Т	F	Т	Т
F	F	F	Т	Т	Т	Т

- 5. For problems 5.a 5.d, negate the given statements:
 - (a) All bats drink milk.

Some bats don't drink milk.

At least one bat doesn't drink milk

(b) Some dogs play poker.

No dogs play poker.

- (c) No one can blow smoke rings from their ears.Some people can blow smoke rings from their ears.At least one person can blow smoke rings from their ears.
- (d) ∃a real number x, ∍∀ real numbers y, x + y = y.
 (i.e. There exists a real number x, such that for all real numbers y, x + y = y.)
 ~ (∃a real number x, ∍∀ real number s y, x + y = y.)
 ⇔∀a real number x, ~ (∀ real numbers y, x + y = y.)
 ⇔∀a real number x, ∃ a real number y, ∞ (x + y = y.)
 ⇔∀a real number x, ∃ a real number y, ∍x + y ≠ y.

- 6. In problems 6.a 6.d, determine whether the given arguments are valid.
 - (a) $(p \leftrightarrow q) \land (q \lor r) \therefore (p \to r)$

Our argument is of the form:

$$\underbrace{[(p \leftrightarrow q) \land (q \lor r)]}_{(p \to q)} \to \underbrace{(p \to r)}_{(p \to q)}$$

conjunction of premises conclusion

p	q	r	$(p \leftrightarrow q)$	$(q \lor r)$	$(p \leftrightarrow q) \land (q \lor r)$	$(p \rightarrow r)$	$\left \left[(p \leftrightarrow q) \land (q \lor r) \right] \to (p \to r) \right.$
Т	Т	Т	Т	Т	Т	Т	Т
Т	Т	F	Т	Т	Т	F	F
Т	F	Т	F	Т	F	Т	Т
Т	F	F	F	F	F	F	Т
F	Т	Т	F	Т	F	Т	Т
F	Т	F	F	Т	F	Т	Т
F	F	Т	Т	Т	Т	Т	Т
F	F	F	Т	F	F	Т	Т

Since the argument is not a tautology, it is INVALID.

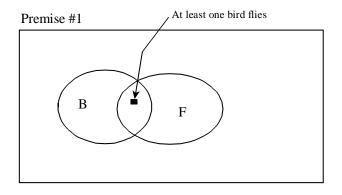
(b) Some birds fly. All things that fly consume gasoline. Therefore, some birds consume gasoline.

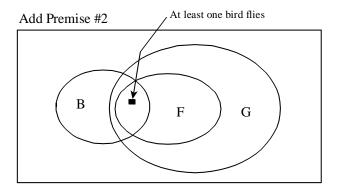
Since this argument involves quantifiers (e.g., "some," "all) we will use the Euler Circle approach.

- P_1 : Some birds fly.
- P_2 : All things that fly consume gasoline.
- \therefore C: Some birds consume gasoline.

We use the following notation:

- B Birds
- F Things that fly
- ${\cal G}$ Things that consume gasoline





Since the conclusion must be true whenever the premises are true, the argument is Valid.

- (c) If I shine my shoes and I comb my hair, then I will get a date. I will get a date. Therefore, if I don't shine my shoes, then I comb my hair.
 - p I shine my shoes
 - q I comb my hair
 - r I will get a date

Premise 1: If I shine my shoes and I comb my hair then I will get a date.

$$(p \land q)$$
 $\xrightarrow{}$ r

Premise 2: I will get a date. r

 $\mbox{Conclusion: If \underline{I \mbox{ don't shine my shoes}, then } \underline{I \mbox{ comb my hair.}}$

$$\sim p$$
 \rightarrow q

Our argument has the form:

$$\underbrace{[((p \land q) \to r) \land r]}_{\text{conjunction of the premises}} \to \underbrace{(\sim p \to q)}_{\text{conclusion}}$$

conjunction of the premises

p	q	r	$ \sim p$	$(p \wedge q)$	$(p \land q) \to r$	$[((p \land q) \to r) \land r]$	$(\sim p \rightarrow q)$	$\left \left[((p \land q) \to r) \land r \right] \to (\sim p \to q) \right.$
Т	Т	Т	F	Т	Т	Т	Т	Т
Т	Т	F	F	Т	F	F	Т	Т
Т	F	Т	F	F	Т	Т	Т	Т
Т	F	F	F	F	Т	F	Т	Т
F	Т	Т	Т	F	Т	Т	Т	Т
F	Т	F	Т	F	Т	F	Т	Т
F	F	Т	Т	F	Т	Т	F	F
F	F	F	Т	F	Т	F	F	Т

Since the argument is not a tautology, it is INVALID.

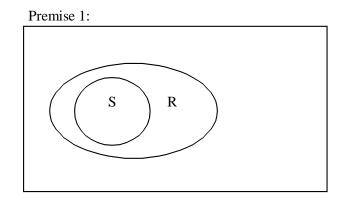
(d) All squares are rectangles. Some triangles are rectangles. Therefore, some squares are triangles.

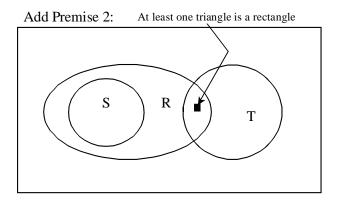
Since this argument involves quantifiers (e.g., "some," "all) we will use the Euler Circle approach.

- P_1 : All squares are rectangles.
- P_2 : Some triangles are rectangles.
- \therefore C: Some squares are triangles

We use the following notation:

- S Squares
- ${\cal R}$ Rectangles
- T Triangles





Since the premises can be made True and the conclusion can be made False, the argument is INVALID.

7. Give the converse and the contrapositive of the following statement:

(a) If
$$\underbrace{x=2}_{p}$$
, $\underbrace{\text{then}}_{\rightarrow} \underbrace{f(x)=5}_{q}$.

converse:

If
$$\underbrace{f(x) = 5}_{q}$$
, $\underbrace{\text{then}}_{\rightarrow} \underbrace{x = 2}_{p}$.

contrapositive:

$$\underbrace{f(x) \neq 5}_{\sim q}, \underbrace{\text{then}}_{\rightarrow} \underbrace{x \neq 2}_{\sim p}.$$