MTH_2215_Practice_Test_2

 $\overline{\text{Spring }2021}$

Pat Rossi

Name ____

Show CLEARLY how you arrive at your answers.

- 1. List the members of the set: $\{x \mid x \text{ is an integer such that } x^2 \leq 12\}$ in roster form:
- 2. Express the set $\{0, 2, 4, 6, 8, \ldots\}$ using "set builder notation."
- 3. Let $A=\{2,3,4\}$ and $B=\{2,5\}$. Compute $A\times B$
- 4. Let $A = \{2, 3, 4\}$ and $B = \{2, 5\}$. Compute $B \times A$
- 5. Let $A = \{1, 2\}$; $B = \{a, b\}$ and $C = \{\alpha, \beta\}$. Compute $A \times B \times C$

For Exercises 6-9, Sets A, B, C, and U are defined as follows: $A = \{1, 2, 3, 4, 5, 6, 7\}$; $B = \{4, 5, 6, 7, 8, 9, 10\}$; $C = \{2, 4, 6, 8, 10\}$; $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}$

- 6. $A \cap B =$
- 7. $\overline{A} =$
- 8. $A \cup C =$
- 9. B C =
- 10. For arbitrary sets A and B, give an equivalent expression for $\overline{(A \cup B)}$
- 11. For arbitrary sets A and B, give an equivalent expression for $\overline{(A \cap B)}$
- 12. Suppose that the Universal set is $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$

Express the set below with bit strings such that the i^{th} bit is 1 if i is in the set, and the i^{th} bit is 0 otherwise.

- (a) $\{2, 3, 5, 6\}$
- (b) $\{1, 3, 5, 9, 10\}$
- 13. Using the same universal set as in the last problem, find the set specified by each of these bit strings.
 - (a) 1100101111
 - (b) 0010100101

- 14. Compute the following values:
 - (a) [2.3]
 - (b) [2.9]
 - (c) [3.0]
 - (d) [-3.5]
- 15. Compute the following values:
 - (a) [2.3]
 - (b) [2.9]
 - (c) [3.0]
 - (d) [-3.5]
- 16. List the first three terms of the sequence whose n^{th} term is given by:
 - (a) $a_n = 3n + 2$
 - (b) $a_n = 2^n$
- 17. Given the expressions below, ¹write out the terms of the sums and ²compute the value of the sums
 - (a) $\sum_{i=1}^{3} (3i+2) =$
 - (b) $\sum_{i=1}^{3} (i^2 + 2i) =$
- 18. Compute the double sum: $\sum_{i=1}^{3} \sum_{j=1}^{2} (i+j) =$
- 19. Compute the value of the sum $\sum_{i=0}^{7} 3 \cdot 2^{i}$
- 20. Find the first six terms of the sequence defined by the recurrence relation: $a_n = -2a_{n-1}$; $a_0 = -1$