MTH 3311 - Test \#2 - Part \#2 - Solutions
 Spring 2020

Pat Rossi
Name \qquad

Directions: Show CLEARLY how you arrive at your answers.

1. The force of water resistance acting on a boat is proportional to its instantaneous velocity, and is such that at $30 \frac{\mathrm{ft}}{\mathrm{sec}}$ the water resistance is 60 lb . If the boat and passenger combined weigh 480 lb , and if the motor exerts a steady force of 90 lb in the direction of the motion:
(a) Find the velocity at any time $t \geq 0$, assuming that the boat starts from rest.
(b) Find the limiting velocity

First, we establish our conventions regarding direction:

$$
\text { Positive Direction } \rightarrow
$$

We will start our stopwatch at $\mathrm{t}=0 \mathrm{sec}$., and assume that $v(0 \mathrm{sec})=\frac{0 \mathrm{ft}}{\text { sec }}$ (Because "the boat starts from rest")

Let R be the water resistance.
Let $F_{m}=$ Force exerted by the motor
Let w be the combined weight of the boat and the passenger.
Observe that the water exerts a buoyant force equal to $-w$ on the boat (Otherwise, the boat would sink!)

We draw a force diagram on the boat

Also: "water resistance . . . is proportional to its instantaneous velocity" i.e. $R \propto v$
$\Rightarrow R=k v$; where k is the constant of proportionality.
For "future reference," we will find the constant of proportionality right now.
Recall: When $v=30 \frac{\mathrm{ft}}{\mathrm{sec}} ; R=-60 \mathrm{lb}$ (Because "at a velocity of $30 \frac{\mathrm{ft}}{\mathrm{sec}}$; the water resistance is 60 lb ")

Also: $R=k v$
$\Rightarrow-60 \mathrm{lb}=k\left(30 \frac{\mathrm{ft}}{\mathrm{sec}}\right)$
$\Rightarrow k=\frac{-60 \mathrm{lb}}{30 \frac{\mathrm{ft}}{\mathrm{sec}}}=-2 \frac{\mathrm{lb} \mathrm{sec}}{\mathrm{ft}}$
i.e., $k=-2 \frac{\mathrm{lb} \mathrm{sec}}{\mathrm{ft}} \quad$ (for "future reference")

Next: We analyze the forces acting on the boat. From the Force Diagram:

1) The sum of the vertical forces is 0 lb .
2) The sum of the horizontal forces is $R+F_{m}$

Letting F be the total force acting on the boat, we have: $F=R+F_{m}$
Remark: To allow ourselves to model this relationship as a differential equation, we will employ a standard trick:

Note well: We set F (the sum or all forces on the object) equal to $m a$

$$
\underbrace{\text { Sum of all forces }}_{F}=\underbrace{m a}_{F}
$$

This is a standard approach for velocity exercises.

Our "Standard Trick" yields the equation $\underbrace{R+F_{m}}_{\substack{\text { Sum of all } \\ \text { Forces }}}=\underbrace{m a}_{F}$
Recall: acceleration is the derivative of velocity. (i.e., $a=\frac{d v}{d t}$)
Thus, Eq. 1 becomes:
$\underbrace{k v+90 \mathrm{lb}}_{R+F_{m}}=m \frac{d v}{d t}$
This is a differential equation in v that we can solve.
$-m \frac{d v}{d t}+k v=-90 \mathrm{lb}$
$\Rightarrow \frac{d v}{d t}+\underbrace{\left(-\frac{k}{m}\right)}_{P(t)} v=\underbrace{\frac{90 \mathrm{lb}}{m}}_{Q(t)}$
Our "integrating factor" is $e^{\int P(t) d t}=e^{\int\left(-\frac{k}{m}\right) d t}=e^{-\frac{k}{m} t}$
Multiplying both sides by the integrating factor, we have:
$e^{-\frac{k}{m} t} \frac{d v}{d t}+\left(-\frac{k}{m}\right) e^{-\frac{k}{m} t} v=\frac{901 \mathrm{~b}}{m} e^{-\frac{k}{m} t}$
$\Rightarrow \frac{d}{d t}\left[e^{-\frac{k}{m} t} v\right]=\frac{90 \mathrm{lb}}{m} e^{-\frac{k}{m} t}$
$\Rightarrow \int \frac{d}{d t}\left[e^{-\frac{k}{m} t} v\right] d t=\int \frac{90 \mathrm{lb}}{m} e^{-\frac{k}{m} t} d t$
$\Rightarrow e^{-\frac{k}{m} t} v=\frac{90 \mathrm{lb}}{m}\left(-\frac{m}{k} e^{-\frac{k}{m} t}\right)+C=-\frac{90 \mathrm{lb}}{k} e^{-\frac{k}{m} t}+C$
i.e. $e^{-\frac{k}{m} t} v=-\frac{90 \mathrm{lb}}{k} e^{-\frac{k}{m} t}+C$
$\Rightarrow v=-\frac{901 \mathrm{~b}}{k}+e^{\frac{k}{m} t} C$
i.e., $v=-\frac{901 \mathrm{~b}}{k}+C e^{\frac{k}{m} t}$
\Rightarrow Recall: $v(0 \mathrm{sec})=0 \frac{\mathrm{ft}}{\mathrm{sec}} \quad$ (Because "the boat starts from rest.")
$\Rightarrow 0 \frac{\mathrm{ft}}{\mathrm{sec}}=v(0 \mathrm{sec})=-\frac{90 \mathrm{lb}}{k}+C e^{\frac{k}{m}(0 \mathrm{sec})}=-\frac{90 \mathrm{lb}}{k}+C$
\Rightarrow i.e. $0 \frac{\mathrm{ft}}{\mathrm{sec}}=-\frac{90 \mathrm{lb}}{k}+C$
\Rightarrow i.e. $C=\frac{90 \mathrm{lb}}{k}$
$\Rightarrow v=-\frac{90 \mathrm{lb}}{k}+\frac{90 \mathrm{lb}}{k} e^{\frac{k}{m} t}$
Recall Also: $k=-2 \frac{\mathrm{lb} \mathrm{sec}}{\mathrm{ft}}$
Thus, $v=-\frac{90 \mathrm{lb}}{\left(-2 \frac{\mathrm{lb} \text { sec }}{\mathrm{ft}}\right)}+\frac{90 \mathrm{lb}}{\left(-2 \frac{1 \mathrm{bsec}}{\mathrm{ft}}\right)} e^{\frac{\left(-2 \frac{\mathrm{lb} \text { sec }}{\mathrm{ft}}\right)}{m} t}=45 \frac{\mathrm{ft}}{\mathrm{sec}}-45 \frac{\mathrm{ft}}{\mathrm{sec}} e^{\frac{\left(-2 \frac{\mathrm{lb} \text { sec }}{\mathrm{ft}}\right)}{m} t}$
i.e., $v=45 \frac{\mathrm{ft}}{\mathrm{sec}}-45 \frac{\mathrm{ft}}{\sec } e^{\frac{\left(-2 \frac{\mathrm{lb} \text { sec }}{\mathrm{ft}}\right)}{m} t}$

All we need to do now is find the value of m.

Recall: $w=m g$ (Where w is the weight of the object, and g is the acceleration due to gravity. i.e., $g=-\frac{32 \mathrm{ft}}{\sec ^{2}}$)
$\Rightarrow m=\frac{w}{g}=\frac{-480 \mathrm{lb}}{\left(-\frac{32 \mathrm{ft}}{\mathrm{sec}^{2}}\right)}=15 \frac{\mathrm{lb} \mathrm{sec}^{2}}{\mathrm{ft}}$
i.e., $m=15 \frac{\mathrm{lb} \mathrm{sec}{ }^{2}}{\mathrm{ft}}$

Hence, $v=45 \frac{\mathrm{ft}}{\mathrm{sec}}-45 \frac{\mathrm{ft}}{\sec } e^{\frac{\left(-2 \frac{\mathrm{lb} \mathrm{sec}}{\mathrm{fec}}\right)}{\left(15 \frac{\mathrm{lb} \mathrm{fec} \mathrm{c}^{2}}{\mathrm{ft}}\right)} t}=45 \frac{\mathrm{ft}}{\mathrm{sec}}-45 \frac{\mathrm{ft}}{\mathrm{sec}} e^{-\frac{2}{15 \sec t} t}$
i.e., $v=45 \frac{\mathrm{ft}}{\mathrm{sec}}-45 \frac{\mathrm{ft}}{\mathrm{sec}} e^{-\frac{2}{15 \mathrm{sec}} t}$

To find the "limiting velocity," we let $t \rightarrow \infty$
$\lim _{t \rightarrow \infty} v=\lim _{t \rightarrow \infty}\left(45 \frac{\mathrm{ft}}{\mathrm{sec}}-45 \frac{\mathrm{ft}}{\sec } e^{-\frac{2}{15 \sec } t}\right)=45 \frac{\mathrm{ft}}{\mathrm{sec}}$
i.e., Limiting Velocity $=45 \frac{\mathrm{ft}}{\mathrm{sec}}$

