Exercises Involving Real Numbers \#2

FALL 2005
Pat Rossi
Name \qquad

Instructions. Prove or Disprove:

1. Let n be a number with three or more digits. If the two digit number made by n 's last two digits is divisible by 4 , then n is divisible by 4
2. If $(a+b)^{2}=a^{2}+b^{2}$ for all real numbers b, then a must be zero.
3. Let n be a natural number. If the number $2^{n}-1$ is a prime number, then n is a prime number as well.
4. Every four digit palindrome number is divisible by 4. (A palindrome number reads the same forward or backward.)

For 5-6, prove:

5. Show that if x is a real number, then $x \cdot 0=0$ by giving a direct proof. You can assume the following: If a, b, and c are real numbers, then
(a) $b+0=b$
(b) $a(b+c)=a b+a c$
6. If $a+b=a+c$ then $b=c$
