## Laplace Transforms Homework \#2

Spring 2022
Pat Rossi
Name $\qquad$

Instructions. For problems 1-10, find the Laplace Transform of each function.
Note well: We will use the "linearity properties" of Laplace transforms frequently.
In particular:

1) For any canstant $c, \mathcal{L}[c f(t)]=c \mathcal{L}[f(t)]$
and
2) $\mathcal{L}\left[f_{1}(t) \pm f_{2}(t)\right]=\mathcal{L}\left[f_{1}(t)\right] \pm \mathcal{L}\left[f_{2}(t)\right]$
1. $5-8 t^{3}$

$$
\mathcal{L}\left[5-8 t^{3}\right]=\mathcal{L}[5]-\mathcal{L}\left[8 t^{3}\right]=\mathcal{L}[5]-8 \mathcal{L}\left[t^{3}\right]=\underbrace{\frac{5}{s}}_{\text {Transform } \# 1}-8 \underbrace{\frac{3!}{s^{4}}}_{\text {Transform } \# 4}]
$$

$$
\text { i.e., } \mathcal{L}\left[5-8 t^{3}\right]=\frac{5}{s}-\frac{48}{s^{4}}
$$

2. $\frac{1}{8} \cos \left(\frac{3}{8} t\right)$

$$
\begin{aligned}
& \mathcal{L}\left[\frac{1}{8} \cos \left(\frac{3}{8} t\right)\right]=\frac{1}{8} \mathcal{L}\left[\cos \left(\frac{3}{8} t\right)\right]=\frac{1}{8} \underbrace{\frac{s}{s^{2}+\left(\frac{3}{8}\right)^{2}}}_{\text {Transform } \# 9}=\frac{s}{8\left(s^{2}+\frac{9}{\left.8^{2}\right)}\right.}=\frac{s}{8 s^{2}+\frac{9}{8}}=\frac{8}{8} \frac{s}{\left(8 s^{2}+\frac{9}{8}\right)}=\frac{8 s}{64 s^{2}+9} \\
& \text { i.e., } \mathcal{L}\left[\frac{1}{8} \cos \left(\frac{3}{8} t\right)\right]=\frac{8 s}{64 s^{2}+9}
\end{aligned}
$$

3. $e^{3 t} \cos (2 t)-e^{t} \sinh (5 t)$

$$
\mathcal{L}\left[e^{3 t} \cos (2 t)-e^{t} \sinh (5 t)\right]=\mathcal{L}\left[e^{3 t} \cos (2 t)\right]-\mathcal{L}\left[e^{t} \sinh (5 t)\right]=\underbrace{\frac{(s-3)}{(s-3)^{2}-2^{2}}}_{\substack{\text { Transformation \#9 } \\ \text { Property \#3 }}}-\underbrace{\frac{5}{(s-1)^{2}-5^{2}}}_{\substack{\text { Transformation \#12 } \\ \text { Property \#3 }}}
$$

$$
=\frac{s-3}{(s-3)^{2}+4}-\frac{5}{(s-1)^{2}-25}
$$

$$
\text { i.e., } \mathcal{L}\left[e^{3 t} \cos (2 t)-e^{t} \sinh (5 t)\right]=\frac{s-3}{(s-3)^{2}+4}-\frac{5}{(s-1)^{2}-25}
$$

4. $\cos (t)-\sin (t)$

$$
\begin{aligned}
& \mathcal{L}[\cos (t)-\sin (t)]=\mathcal{L}[\cos (t)]-\mathcal{L}[\sin (t)]=\underbrace{\frac{s}{s^{2}+1^{2}}}_{\text {Transformation } \# 9}-\underbrace{\frac{1}{s^{2}+1^{2}}}_{\text {Transformation } \# 10} \\
&=\frac{s-1}{s^{2}+1} \\
& \text { i.e., } \mathcal{L}[\cos (t)-\sin (t)]=\frac{s-1}{s^{2}+1}
\end{aligned}
$$

5. $t^{7}-t^{4}+5 t^{2}$

$$
\mathcal{L}\left[t^{7}-t^{4}+5 t^{2}\right]=\mathcal{L}\left[t^{7}\right]-\mathcal{L}\left[t^{4}\right]+\mathcal{L}\left[5 t^{2}\right]=\mathcal{L}\left[t^{7}\right]-\mathcal{L}\left[t^{4}\right]+5 \mathcal{L}\left[t^{2}\right]
$$

$$
\underbrace{\frac{7!}{s^{7+1}}}_{\text {Transformation } \# 5}-\underbrace{\frac{4!}{s^{4+1}}}_{\text {Transformation } \# 5}+\underbrace{\frac{2!}{s^{2+1}}}_{\text {Transformation } \# 5}=\frac{7!}{s^{8}}-\frac{4!}{s^{5}}+\frac{5(2!)}{s^{3}}
$$

$$
\text { i.e., } \mathcal{L}\left[t^{7}-t^{4}+5 t^{2}\right]=\frac{7!}{s^{8}}-\frac{4!}{s^{5}}+\frac{5(2!)}{s^{3}}
$$

6. $t \sinh (t)$

We don't have a formula on our Laplace Transforms Table that gives us $\mathcal{L}[t f(t)]$ for an arbitrary function $f(t)$. But we DO have a formula for $\mathcal{L}\left[t e^{k t}\right]$ (Transform \#14). Maybe we can use that along with the fact that $\sinh (t)=\frac{e^{x}-e^{-x}}{2}$.

$$
\begin{aligned}
& \mathcal{L}[t \sinh (t)]=\mathcal{L}\left[t \frac{e^{x}-e^{-x}}{2}\right]=\mathcal{L}\left[\frac{t\left(e^{x}-e^{-x}\right)}{2}\right]=\mathcal{L}\left[\frac{t e^{x}-t e^{-x}}{2}\right]=\frac{1}{2} \mathcal{L}\left[\frac{1}{2} t e^{x}-\frac{1}{2} t e^{-x}\right] \\
& =\mathcal{L}\left[\frac{1}{2} t e^{x}\right]-\mathcal{L}\left[\frac{1}{2} t e^{-x}\right]=\frac{1}{2} \mathcal{L}\left[t e^{x}\right]-\frac{1}{2} \mathcal{L}\left[t e^{-x}\right]=\underbrace{\frac{1}{2}\left(\frac{1}{(s-1)^{2}}\right)-\frac{1}{2}\left(\frac{1}{(s+1)^{2}}\right)}_{\text {By Transform \#14 }} \\
& =\frac{1}{2}\left(\left(\frac{1}{(s-1)^{2}}\right)-\left(\frac{1}{(s+1)^{2}}\right)\right)=\frac{1}{2}\left(\left(\frac{(s+1)^{2}}{(s+1)^{2}(s-1)^{2}}\right)-\left(\frac{(s-1)^{2}}{(s+1)^{2}(s-1)^{2}}\right)\right) \\
& =\frac{1}{2}\left(\left(\frac{s^{2}+2 s+1}{(s+1)^{2}(s-1)^{2}}\right)-\left(\frac{s^{2}-2 s+1}{(s+1)^{2}(s-1)^{2}}\right)\right)=\frac{2 s}{\left(s^{2}-1\right)^{2}}
\end{aligned}
$$

i.e. $\mathcal{L}[t \sinh (t)]=\frac{2 s}{\left(s^{2}-1\right)^{2}}$
7. $\frac{d}{d t}\left[t e^{5 t}\right]$

Hmmm . . . We could use the Product Rule to compute $\frac{d}{d t}\left[t e^{5 t}\right]$, and then compute the Laplace Transform of the result. Or we could use Transform \#19: $\mathcal{L}\left[f^{\prime}(t)\right]=$ $s F(s)-f(0)$, where $f(t)=t e^{5 t}$.

Observe: $F(s)=\mathcal{L}[f(t)]=\underbrace{\mathcal{L}\left[t e^{5 t}\right]=\frac{1}{(s-5)^{5}}}_{\text {By Transformation \#14 }}$
$\Rightarrow s F(s)=\frac{s}{(s-5)^{5}}$
$\mathcal{L}\left[\frac{d}{d t}\left[t e^{5 t}\right]\right]=s F(s)-f(0)=\frac{s}{(s-5)^{5}}-\left[t e^{5 t}\right]_{x=0}=\frac{s}{(s-5)^{5}}-0=\frac{s}{(s-5)^{5}}$

$$
\mathcal{L}\left[\frac{d}{d t}\left[t e^{5 t}\right]\right]=\frac{s}{(s-5)^{5}}
$$

8. $\frac{d^{2}}{d t^{2}}\left[\cos (t)+t e^{t}\right]$

Following the same strategy that we used in the previous exercise, we refer to Transformation \#20:
$£\left[f^{\prime \prime}(t)\right]=s^{2} F(s)-s f(0)-f^{\prime}(0)$.
Here, $f(t)=\cos (t)+t e^{t} ; \quad f^{\prime}(t)=-\sin (t)+(t+1) e^{t} ;$
$f(0)=\cos (0)+(0) e^{0}=1$
$f^{\prime}(0)=-\sin (0)+((0)+1) e^{0}=1$
$F(s)=\mathcal{L}[f(t)]=\mathcal{L}\left[\cos (t)+t e^{t}\right]=\mathcal{L}[\cos (t)]+\mathcal{L}\left[t e^{t}\right]=\underbrace{\frac{s}{s^{2}+1}}_{\text {Transformation } \# 9}+\underbrace{\frac{1}{(s-1)^{2}}}_{\text {Transformation \#14 }}$
i.e., $F(s)=\frac{s}{s^{2}+1}+\frac{1}{(s-1)^{2}}$
$£\left[\frac{d^{2}}{d t^{2}}\left[\cos (t)+t e^{t}\right]\right]=£\left[f^{\prime \prime}(t)\right]=s^{2} F(s)-s f(0)-f^{\prime}(0)=s^{2}\left(\frac{s}{s^{2}+1}+\frac{1}{(s-1)^{2}}\right)-s \cdot 1-1$
$=\frac{s^{3}}{s^{2}+1^{2}}+\frac{s^{2}}{(s-1)^{2}}-s-1$
i.e., $£\left[\frac{d^{2}}{d t^{2}}\left[\cos (t)+t e^{t}\right]\right]=\frac{s^{3}}{s^{2}+1^{2}}+\frac{s^{2}}{(s-1)^{2}}-s-1$
9. $\int_{0}^{t} \cosh (z) \cos (t-z) d z$
10. $\int_{0}^{t} e^{x} \cos (2 x) d x$

Let $f(t)=\int_{0}^{t} e^{x} \cos (2 x) d x$
Then $f(0)=\int_{0}^{0} e^{0} \cos (2(0)) d x=0$
i.e., $f(0)=0$

Also, by the Fundamental Theorem of Calculus, $f^{\prime}(t)=\frac{d}{d t}[f(t)]=\frac{d}{d t} \int_{0}^{t} e^{x} \cos (2 x) d x=$ $e^{t} \cos (2 t)$
i.e., $f^{\prime}(t)=e^{t} \cos (2 t)$

We want: $\mathcal{L}\left[\int_{0}^{t} e^{x} \cos (2 x) d x\right]$
How do we compute the Laplace Transform of a definite integral???
Observe: We want: $\mathcal{L}\left[\int_{0}^{t} e^{x} \cos (2 x) d x\right]=\mathcal{L}[f(t)]=F(s)$
If we find $F(s)$, we will have found $\mathcal{L}\left[\int_{0}^{t} e^{x} \cos (2 x) d x\right]$
Toward this end, Recall: Transform \#19: $\mathcal{L}\left[f^{\prime}(t)\right]=s F(s)-f(0)$. In this case, $f^{\prime}(t)=e^{t} \cos (2 t)$

Thus, $\mathcal{L}\left[f^{\prime}(t)\right]=\mathcal{L}\left[e^{t} \cos (2 t)\right]$
To compute $\mathcal{L}\left[e^{t} \cos (2 t)\right]$, first note that $\underbrace{\mathcal{L}[\cos (2 t)]=\frac{s}{s^{2}+2^{2}}}_{\text {Transform } \# 9}=\frac{s}{s^{2}+4}$.
Applying Property \#3 on Laplace Transforms Properties yields: $\mathcal{L}\left[e^{t} \cos (2 t)\right]=$ $\frac{s-1}{(s-1)^{2}+4}$

Summarizing what we have so far:
Given $f(t)=\int_{0}^{t} e^{x} \cos (2 x) d x$, we want $F(s)=\mathcal{L}[f(t)]=\mathcal{L}\left[\int_{0}^{t} e^{x} \cos (2 x) d x\right]$
$F(s)$ can be found more easily by using the formula $\mathcal{L}\left[f^{\prime}(t)\right]=s F(s)-f(0)$ and solving for $F(s)$.

By the Fundamental Theorem of Calculus, $f^{\prime}(t)=\frac{d}{d t} f(t)=\frac{d}{d t} \int_{0}^{t} e^{x} \cos (2 x) d x=$ $e^{t} \cos (2 t)$.
i.e., $f^{\prime}(t)=e^{t} \cos (2 t)$

Also: $f(0)=\int_{0}^{0} e^{x} \cos (2 x) d x=0$
And: $\mathcal{L}\left[f^{\prime}(t)\right]=\mathcal{L}\left[e^{t} \cos (2 t)\right]=\frac{s-1}{(s-1)^{2}+4}$
Finally: $\mathcal{L}\left[f^{\prime}(t)\right]=s F(s)-f(0)=s F(s)-0=s F(s)$
i.e., $\mathcal{L}\left[f^{\prime}(t)\right]=\frac{s-1}{(s-1)^{2}+4} \quad$ and $\quad \mathcal{L}\left[f^{\prime}(t)\right]=s F(s)$
$\Rightarrow s F(s)=\frac{s-1}{(s-1)^{2}+4}$
$\Rightarrow F(s)=\frac{s-1}{s\left[(s-1)^{2}+4\right]}$

Further Instructions For problems 11-20, find the Inverse Laplace Transform of each function.

Remark: We will make copious use of two fundamental properties of Laplace Transform Inverses:

1) $£^{-1}[F(s) \pm G(s)]=£^{-1}[F(s)] \pm £^{-1}[G(s)]$
2) $£[c \cdot F(s)]=c \cdot £[F(s)]$
11. $\frac{2}{s^{2}+k^{2}}$
$£^{-1}\left[\frac{2}{s^{2}+k^{2}}\right]=2 £^{-1}\left[\frac{1}{s^{2}+k^{2}}\right]=? ? ?$
I would like to use Formula $\# 6$ on $A$ Table of Laplace Transform Inverses: $£^{-1}\left[\frac{k}{s^{2}+k^{2}}\right]=$ $\sin (k t)$

In order to use this formula, I need to get the constant " $k$ " in the numerator.
$£^{-1}\left[\frac{2}{s^{2}+k^{2}}\right]=2 £^{-1}\left[\frac{1}{s^{2}+k^{2}}\right]=2 £^{-1}\left[\frac{1}{k} \frac{k}{s^{2}+k^{2}}\right]=2 £^{-1}\left[\frac{1}{k} \frac{k}{s^{2}+k^{2}}\right]=\frac{2}{k} £^{-1}\left[\frac{k}{s^{2}+k^{2}}\right]=$ $\frac{2}{k} \sin (k t)$
i.e., $£^{-1}\left[\frac{2}{s^{2}+k^{2}}\right]=\frac{2}{k} \sin (k t)$
12. $\frac{n!}{(s-k)^{n+1}} ; n=1,2,3, \ldots$
i.e., $£^{-1}\left[\frac{n!}{(s-k)^{n+1}}\right]=t^{n} e^{k t}$
(Using Formula \#5 on A Table of Laplace Transform Inverses)
13. $\frac{s}{s^{2}-k^{2}}$

$$
\text { i.e., } £^{-1}\left[\frac{s}{s^{2}-k^{2}}\right]=\cosh (k t)
$$

(Using Formula \#10 on A Table of Laplace Transform Inverses)
14. $\frac{2}{\left(s^{2}+1\right)^{2}}$

This doesn't really fit any of our forms:
We have: $\frac{2 k s}{\left(s^{2}+k^{2}\right)^{2}}$ (Formula \#13) and $\frac{s^{2}-k^{2}}{\left(s^{2}+k^{2}\right)^{2}}$ (Formula \#14), but we don't have a formula with just a plain old constant over $\left(k^{2}+s^{2}\right)^{2}$.

If we are to use either (or both) of these forms, $k=1$.
So our forms will be: $£^{-1}\left[\frac{2 s}{\left(s^{2}+1\right)^{2}}\right]=t \sin (t)$ and $£^{-1}\left[\frac{s^{2}-1}{\left(s^{2}+1\right)^{2}}\right]=t \cos (k t)$
Q: Can we do anything with these?
Observe: $\frac{s^{2}-1}{\left(s^{2}+1\right)^{2}}=\frac{1}{s^{2}+1}-\frac{2}{\left(s^{2}+1\right)^{2}}$ (Using Partial Fraction Decomposition.)
$\Rightarrow \frac{2}{\left(s^{2}+1\right)^{2}}=\frac{1}{s^{2}+1}-\frac{s^{2}-1}{\left(s^{2}+1\right)^{2}}$
Thus, $£^{-1}\left[\frac{2}{\left(s^{2}+1\right)^{2}}\right]=£^{-1}\left[\frac{1}{s^{2}+1}-\frac{s^{2}-1}{\left(s^{2}+1\right)^{2}}\right]=£^{-1}\left[\frac{1}{s^{2}+1}\right]-£^{-1}\left[\frac{s^{2}-1}{\left(s^{2}+1\right)^{2}}\right]=\sin (t)-$ $t \cos (t)$
(Using Formulas \#6, 14 on A Table of Laplace Transform Inverses)
i.e., $\mathscr{L}^{-1}\left[\frac{2}{\left(s^{2}+1\right)^{2}}\right]=\sin (t)-t \cos (t)$
15. $\frac{s^{2}+3 s+36}{s\left(s^{2}+13 s+36\right)}$

$$
£^{-1}\left[\frac{s^{2}+3 s+36}{s\left(s^{2}+13 s+36\right)}\right]=? ? ?
$$

This doesn't even come remotely close to fitting any form given on A Table of Laplace Transform Inverses - We must re-express $F(s)$, using Partial Fraction Decomposition

$$
\begin{aligned}
& \frac{s^{2}+3 s+36}{s\left(s^{2}+13 s+36\right)}=\frac{s^{2}+3 s+36}{s(s+9)(s+4)}=\frac{c_{1}}{s}+\frac{c_{2}}{(s+9)}+\frac{c_{3}}{(s+4)} \\
& \Rightarrow s^{2}+3 s+36=c_{1}(s+9)(s+4)+c_{2} s(s+4)+c_{3} s(s+9)
\end{aligned}
$$

$$
\text { Let } s=0
$$

$$
\Rightarrow 36=c_{1}(9)(4)=36 c_{1}
$$

$$
\Rightarrow c_{1}=1
$$

$$
\text { Let } s=-9
$$

$$
\Rightarrow(-9)^{2}+3(-9)+36=c_{2}(-9)((-9)+4)
$$

i.e. $90=45 c_{2}$

$$
\Rightarrow c_{2}=2
$$

Let $s=-4$
$\Rightarrow(-4)^{2}+3(-4)+36=c_{3}(-4)((-4)+9)$
i.e. $40=-20 c_{3}$
$\Rightarrow c_{3}=-2$

$$
\begin{aligned}
£^{-1}\left[\frac{s^{2}+3 s+36}{s\left(s^{2}+13 s+36\right)}\right] & =£^{-1}\left[\frac{1}{s}+\frac{2}{(s+9)}-\frac{2}{(s+4)}\right]=£^{-1}\left[\frac{1}{s}\right]+2 £^{-1}\left[\frac{1}{(s+9)}\right]-2 £^{-1}\left[\frac{1}{(s+4)}\right] \\
& =1+2 e^{-9 t}-2 e^{-4 t}
\end{aligned}
$$

(Using Formulas \#1, 4 on A Table of Laplace Transform Inverses)
i.e., $£^{-1}\left[\frac{s^{2}+3 s+36}{s\left(s^{2}+13 s+36\right)}\right]=1+2 e^{-9 t}-2 e^{-4 t}$
16. $\frac{s^{2}+4 s+36}{\left(s^{2}-4\right)^{2}}$

Using Partial Fraction Decomposition, we have:

$$
\frac{s^{2}+4 s+36}{\left(s^{2}-4\right)^{2}}=\frac{1}{s+2}-\frac{1}{s-2}+\frac{3}{(s-2)^{2}}+\frac{2}{(s+2)^{2}}
$$

Hence, $£^{-1}\left[\frac{s^{2}+4 s+36}{\left(s^{2}-4\right)^{2}}\right]=£^{-1}\left[\frac{1}{s+2}-\frac{1}{s-2}+\frac{2}{(s+2)^{2}}+\frac{3}{(s-2)^{2}}\right]$

$$
\begin{aligned}
& =£^{-1}\left[\frac{1}{s+2}\right]-£^{-1}\left[\frac{1}{s-2}\right]+2 £^{-1}\left[\frac{1}{(s+2)^{2}}\right]+3 £^{-1}\left[\frac{1}{(s-2)^{2}}\right] \\
& =e^{-2 t}-e^{2 t}+2 t e^{-2 t}+3 t e^{2 t}
\end{aligned}
$$

(Using Formulas \#4, 5 on A Table of Laplace Transform Inverses)
i.e., $£^{-1}\left[\frac{s^{2}+4 s+36}{\left(s^{2}-4\right)^{2}}\right]=e^{-2 t}-e^{2 t}+2 t e^{-2 t}+3 t e^{2 t}$
17. $\frac{s^{2}+2 s+53}{(s+2)\left(s^{2}+49\right)}$

Using Partial Fraction Decomposition, we have:
$\frac{s^{2}+2 s+53}{(s+2)\left(s^{2}+49\right)}=\frac{1}{s+2}+\frac{2}{s^{2}+49}$
Hence, $£^{-1}\left[\frac{s^{2}+2 s+53}{(s+2)\left(s^{2}+49\right)}\right]=£^{-1}\left[\frac{1}{s+2}+\frac{2}{s^{2}+49}\right]=£^{-1}\left[\frac{1}{s+2}\right]+2 £^{-1}\left[\frac{1}{s^{2}+49}\right]$
I want $£^{-1}\left[\frac{1}{s^{2}+49}\right]$ to fit formula $\# 6$ on $A$ Table of Laplace Transform Inverses: $£^{-1}\left[\frac{k}{s^{2}+k^{2}}\right]=\sin (k t)$

So, I will multiply the numerator by $k=7$, and divide by $k=7$.

$$
\begin{aligned}
& £^{-1}\left[\frac{s^{2}+2 s+53}{(s+2)\left(s^{2}+49\right)}\right]=£^{-1}\left[\frac{1}{s+2}+\frac{2}{s^{2}+49}\right]=£^{-1}\left[\frac{1}{s+2}\right]+2 £^{-1}\left[\frac{1}{s^{2}+49}\right] \\
&=£^{-1}\left[\frac{1}{s+2}\right]+2 £^{-1}\left[\frac{1}{7} \frac{7}{s^{2}+49}\right]=£^{-1}\left[\frac{1}{s+2}\right]+\frac{2}{7} £^{-1}\left[\frac{7}{s^{2}+49}\right] \\
&=e^{-2 t}+\frac{2}{7} \sin (7 t)
\end{aligned}
$$

(Using Formulas \#4, 6 on A Table of Laplace Transform Inverses)
i.e., $£^{-1}\left[\frac{s^{2}+2 s+53}{(s+2)\left(s^{2}+49\right)}\right]=e^{-2 t}+\frac{2}{7} \sin (7 t)$
18. $\frac{s^{2}+3 s-18}{s\left(s^{2}-6 s+9\right)}$

Using Partial Fraction Decomposition, we have:

$$
\frac{s^{2}+3 s-18}{s\left(s^{2}-6 s+9\right)}=\frac{(s+6)(s-3)}{s(s-3)^{2}}=\frac{(s+6)}{s(s-3)}=\frac{3}{s-3}-\frac{2}{s}
$$

Hence, $£^{-1}\left[\frac{s^{2}+3 s-18}{s\left(s^{2}-6 s+9\right)}\right]=£^{-1}\left[\frac{3}{s-3}-\frac{2}{s}\right]=3 £^{-1}\left[\frac{1}{s-3}\right]-2 £^{-1}\left[\frac{1}{s}\right]$

$$
=3 e^{3 t}-2
$$

(Using Formulas \#1, 4 on A Table of Laplace Transform Inverses)
i.e., $£^{-1}\left[\frac{s^{2}+3 s-18}{s\left(s^{2}-6 s+9\right)}\right]=3 e^{3 t}-2$
19. $\frac{s^{2}-s+1}{s^{3}(s+1)}$
20. $\frac{2 s-3}{(s+1)^{2}+16}$

