Integration By Parts - Special Problems

Spring, 2004

Name _

Pat Rossi

Instructions. When performing integration by parts on an integral which contains a transcendental function whose derivative is algebraic (e.g. $\tan^{-1}(x)$ has, as its derivative, $\frac{1}{1+x^2}$), the course of action is to let u be the transcendental function. For example, given $\int x \tan^{-1}(x) dx$, we would let $u = \tan^{-1}(x)$, and we would re-write the integrand so that $u = \tan^{-1}(x)$ would come first, giving us: $\int \tan^{-1}(x) dx$.

Compute the following, with this observation in mind.

1. $\int x \tan^{-1}(x) dx =$

Answer: $\frac{1}{2}x^2 \arctan x - \frac{1}{2}x + \frac{1}{2}\arctan x + C$

2. $\int x \ln(x) \, dx =$

Answer: $\frac{1}{2}x^2 \ln x - \frac{1}{4}x^2 + C$

3. $\int \sin^{-1}(x) x dx =$

Answer: $\frac{1}{2}x^2 \arcsin x + \frac{1}{4}x\sqrt{(1-x^2)} - \frac{1}{4}\arcsin x + C$

4. $\int x^3 \tan^{-1}(x) \, dx =$

Answer: $\frac{1}{4}x^4 \arctan x - \frac{1}{12}x^3 + \frac{1}{4}x - \frac{1}{4}\arctan x + C$

5. $\int \tan^{-1}(x) \, dx =$

Answer: $x \arctan x - \frac{1}{2} \ln (1 + x^2) + C$

6. $\int \ln(x) \, dx =$

Answer: $x \ln x - x + C$

7. $\int \sin^{-1}(x) \, dx =$

Answer: $x \arcsin(x) + \sqrt{(1-x^2)} + C$