MTH 1125-Test 2 (9am Class) - Solutions

FALL 2017
Pat Rossi
Name \qquad
Instructions. Show CLEARLY how you arrive at your answers.

1. Compute: $\frac{d}{d x}\left[5 x^{5}+4 x^{4}+3 x^{3}+2 x^{2}+x+4 \sqrt{x}+2\right]=$

$$
\begin{aligned}
& \frac{d}{d x}\left[5 x^{5}+4 x^{4}+3 x^{3}+2 x^{2}+x+4 x^{\frac{1}{2}}+2\right] \\
& =5\left[5 x^{4}\right]+4\left[4 x^{3}\right]+3\left[3 x^{2}\right]+2[2 x]+1+2 x^{-\frac{1}{2}}+0 \\
& =25 x^{4}+16 x^{3}+9 x^{2}+4 x+1+2 x^{-\frac{1}{2}}
\end{aligned}
$$

i.e., $\frac{d}{d x}\left[5 x^{5}+4 x^{4}+3 x^{3}+2 x^{2}+x+4 x^{\frac{1}{2}}+2\right]=25 x^{4}+16 x^{3}+9 x^{2}+4 x+1+2 x^{-\frac{1}{2}}$
2. Compute: $\frac{d}{d x}\left[x^{5} \tan (x)\right]=$

$$
\begin{aligned}
& \frac{d}{d x}[\underbrace{x^{5}}_{1^{s t}} \underbrace{\tan (x)}_{2^{\text {nd }}}]=\underbrace{5 x^{4}}_{1^{\text {st }} \text { prime }} \cdot \underbrace{\tan (x)}_{2^{n d}}+\underbrace{\sec ^{2}(x)}_{2^{\text {nd }} \text { prime }} \cdot \underbrace{x^{5}}_{1^{s t}} \\
& \frac{d}{d x}\left[x^{5} \tan (x)\right]=5 x^{4} \tan (x)+\sec ^{2}(x) \cdot x^{5}
\end{aligned}
$$

3. Compute: $\frac{d}{d x}\left[\frac{3 x^{2}-6 x+2}{\cos (x)}\right]=$

$$
\frac{d}{d x}[\overbrace{\frac{\overbrace{x^{2}-6 x+2}^{\cos (x)}}{\text { Bottom }}}^{\text {top }}]=\frac{\overbrace{(6 x-6)}^{\text {top prime }} \cdot \overbrace{\cos (x)}^{\text {bottom }})}{\overbrace{(-\sin (x))}^{\text {bottom prime }} \cdot \overbrace{\left(3 x^{2}-6 x+2\right)}^{\underbrace{(\cos (x))^{2}}_{\substack{\text { bottom } \\ \text { squared }}}}}
$$

$$
\text { i.e., } \frac{d}{d x}\left[\frac{3 x^{2}-6 x+2}{\cos (x)}\right]=\frac{(6 x-6) \cos (x)+\sin (x)\left(3 x^{2}-6 x+2\right)}{\cos ^{2}(x)}
$$

4. Compute: $\frac{d}{d x}\left[\left(6 x^{20}+8 x^{10}\right)^{5}\right]=$ This is the derivative of a function raised to a power.
$\frac{d}{d x}\left[\left(6 x^{20}+8 x^{10}\right)^{5}\right]=\underbrace{5\left(6 x^{20}+8 x^{10}\right)^{4}}_{\substack{\text { power rule } \\ \text { as usual }}} \cdot \underbrace{\left(120 x^{19}+80 x^{9}\right)}_{\substack{\text { derivative } \\ \text { of inner }}}$
i.e., $\frac{d}{d x}\left[\left(6 x^{20}+8 x^{10}\right)^{5}\right]=5\left(6 x^{20}+8 x^{10}\right)^{4}\left(120 x^{19}+80 x^{9}\right)$
5. Given that $f(x)=2 x^{2}-2 x+1$, give the equation of the line tangent to the graph of $f(x)$ at the point $(2,5)$.

We need two things:
i. A point on the line (We have that: $\left.\left(x_{1}, y_{1}\right)=(2,5)\right)$
ii. The slope of the line (This is $f^{\prime}\left(x_{1}\right)$)

$$
f^{\prime}(x)=4 x-2
$$

At the point $\left(x_{1}, y_{1}\right)=(2,5)$, the slope is $f^{\prime}(2)=4(2)-2=6$
We will use the Point-Slope equation of a line:
$y-y_{1}=m\left(x-x_{1}\right) \quad$ (Where m is the slope and $\left(x_{1}, y_{1}\right)$ is a known point on the line.)
Thus, the equation of the line tangent to the graph of $f(x)$ is:
$y-5=6(x-2)$

The equation of the line tangent is $y-5=6(x-2)$
6. Given that $y=3 x^{2}+6 x$ and that $x=\csc (t)$; compute $\frac{d y}{d t}$ using the Liebniz form of the Chain Rule. (In particular, when doing this exercise, write explicitly the Liebniz form of the chain rule that you are going to use.)

We know:

$$
\begin{aligned}
& \frac{d y}{d x}=6 x+6 \\
& \frac{d x}{d t}=-\csc (t) \cot (t)
\end{aligned}
$$

We want: $\frac{d y}{d t}$
By the Liebniz form of the Chain Rule:

$$
\frac{d y}{d t}=\frac{d y}{d x} \frac{d x}{d t}=(6 x+6)(-\csc (t) \cot (t))=\underbrace{(6 \csc (t)+6)(-\csc (t) \cot (t))}_{\begin{array}{c}
\text { express solely in terms of } \\
\text { independent variable } t
\end{array}}
$$

i.e. $\frac{d y}{d t}=(6 \csc (t)+6)(-\csc (t) \cot (t))$
7. Compute: $\frac{d}{d x}\left[\sin \left(4 x^{2}+8 x+3\right)\right]=$

Outer:	$=\sin (\quad)$
Deriv. of outer	$=\cos (\quad)$

i.e., $\frac{d}{d x}\left[\sin \left(4 x^{2}+8 x+3\right)\right]=\cos \left(4 x^{2}+8 x+3\right)(8 x+8)$
8. Compute: $\frac{d}{d x}\left[\left(\frac{2 x^{5}+10 x}{3 x^{3}+9 x}\right)^{5}\right]=\quad$ In the broadest sense, this is the derivative of a function raised to a power - USE the CHAIN RULE.

$$
\begin{aligned}
& \frac{d}{d x}[\underbrace{\left(\frac{2 x^{5}+10 x}{3 x^{3}+9 x}\right)^{5}}_{(g(x))^{n}}]=\underbrace{5\left(\frac{2 x^{5}+10 x}{3 x^{3}+9 x}\right)^{4}}_{\substack{\text { power rule } \\
\text { as usual }}} \cdot \underbrace{\left(\frac{d}{d x}\left[\frac{2 x^{5}+10 x}{3 x^{3}+9 x}\right]\right)}_{\substack{\text { deriv of } \\
\text { inner Function }}} \\
& =5\left(\frac{2 x^{5}+10 x}{3 x^{3}+9 x}\right)^{4} \underbrace{\frac{\left(10 x^{4}+10\right)\left(3 x^{3}+9 x\right)-\left(9 x^{2}+9\right)\left(2 x^{5}+10 x\right)}{\left(3 x^{3}+9 x\right)^{2}}}_{\substack{\text { quotient } \\
\text { rule }}}
\end{aligned}
$$

$$
\text { i.e., } \frac{d}{d x}\left[\left(\frac{2 x^{5}+10 x}{3 x^{3}+9 x}\right)^{5}\right]=5\left(\frac{2 x^{5}+10 x}{3 x^{3}+9 x}\right)^{4} \cdot \frac{\left(10 x^{4}+10\right)\left(3 x^{3}+9 x\right)-\left(9 x^{2}+9\right)\left(2 x^{5}+10 x\right)}{\left(3 x^{3}+9 x\right)^{2}}
$$

9. Compute: $\frac{d}{d x}\left[\cot ^{5}\left(4 x^{2}+8 x\right)\right]=$ Re-write!

$$
\begin{aligned}
\frac{d}{d x}\left[\left(\cot \left(4 x^{2}+8 x\right)\right)^{5}\right] & \quad \text { This is the derivative of a function, raised to a power } \\
\frac{d}{d x}\left[\left(\cot \left(4 x^{2}+8 x\right)\right)^{5}\right] & =\underbrace{5\left(\cot \left(4 x^{2}+8 x\right)\right)^{4}}_{\substack{\text { power rule } \\
\text { as usual }}} \cdot \underbrace{\left(\frac{d}{d x}\left[\cot \left(4 x^{2}+8 x\right)\right]\right)}_{\substack{\text { derivative } \\
\text { of inner }}} \\
& =5\left(\cot \left(4 x^{2}+8 x\right)\right)^{4} \cdot \underbrace{\left(-\csc ^{2}\left(4 x^{2}+8 x\right)\right) \cdot(8 x+8)}_{\substack{\text { Chain } \\
\text { Rule }}}
\end{aligned}
$$

\square
10. Given that $S^{\prime}(x)=\frac{1}{2 S(x)}$; compute $\frac{d}{d x}\left[S\left(x^{2}\right)\right]$

Outer:	$=S(\quad)$
Deriv. of outer	$=\frac{1}{2 S()}$

$$
\underbrace{\frac{d}{d x}}_{\uparrow}[\underbrace{S}_{\uparrow}(\underbrace{\text { outer }}_{\substack{x^{2}}} \text { inner } \quad=\underbrace{\frac{1}{2 S\left(x^{2}\right)}}_{\substack{\text { Deriv of outer, } \\ \text { eval. at inner }}} \cdot \underbrace{2 x}_{\substack{\text { deriv. of } \\ \text { inner }}}=\frac{2 x}{2 S\left(x^{2}\right)}=\frac{x}{S\left(x^{2}\right)}
$$

$$
\text { i.e., } \frac{d}{d x}\left[S\left(x^{2}\right)\right]=\frac{2 x}{2 S\left(x^{2}\right)}=\frac{x}{S\left(x^{2}\right)}
$$

11. Given that $f(x)=4 x^{2}-3 x+2$, compute $f^{\prime}(x)$ using the definition of derivative. (i.e., using the "limit process.")

$$
\begin{aligned}
& f^{\prime}(x)=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{\left[4(x+\Delta x)^{2}-3(x+\Delta x)+2\right]-\left[4 x^{2}-3 x+2\right]}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0} \frac{\left[4\left(x^{2}+2 x \Delta x+\Delta x^{2}\right)-3(x+\Delta x)+2\right]-\left[4 x^{2}-3 x+2\right]}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0} \frac{\left[4 x^{2}+8 x \Delta x+4 \Delta x^{2}-3 x-3 \Delta x+2\right]-\left[4 x^{2}-3 x+2\right]}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{8 x \Delta x+4 \Delta x^{2}-3 \Delta x}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0} \frac{\Delta x(8 x+4 \Delta x-3)}{\Delta x}=\lim _{\Delta x \rightarrow 0}(8 x+4 \Delta x-3)=8 x+4(0)-3=8 x-3 \\
& \text { i.e., } f^{\prime}(x)=8 x-3
\end{aligned}
$$

