Logic Exercise Set \#7-Part 2 Solutions

Spring 2021
Pat Rossi
Name \qquad

Instructions

1. Determine the output of the combinatorial circuit:

We follow the processing of the input step by step, yielding:

2. Determine the output of the combinatorial circuit:

We follow the processing of the input step by step, yielding:

3. Find the bitwise OR, bitwise AND, and bitwise XOR of the pair of bit strings: 0101001 and 0100111 0101001 OR $0100111 \equiv 0101111$ (The justification is given below)

0101001 AND $0100111 \equiv 0100001$ (The justification is given below)


```
0101001 XOR 0100111 \equiv 0001110 (The justification is given below)
```


4. Find the bitwise OR, bitwise AND, and bitwise XOR of the pair of bit strings: 0101001 and 1011000 0101001 OR $1011000 \equiv 1111001$ (The justification is given below)

(1 OR 1)

0101001 AND $1011000 \equiv 0001000$ (The justification is given below)

5. Determine whether the set of System Specifications is consistent:
s_{1} : The user paid the subscription fee, but does not enter a valid password.
s_{2} : Access is granted if the user has paid the subscription fee and has entered a valid password.
s_{3} : Access is denied if the user has not paid the subscription fee.
s_{4} : If the user has not entered a valid password, but has paid the subscription fee, then access is granted
We represent the simple statements above symbolically, using the following assignments:
p: The user paid the subscription fee
q : The user has entered a valid password
r: Access is granted
Our System specifications are as follows:
s_{1} : The user paid the subscription fee, but does not enter a valid password. $\quad p \wedge(\neg q)$
s_{2} : Access is granted if the user has paid the subscription fee and has entered a valid password. $(p \wedge q) \rightarrow r$
s_{3} : Access is denied if the user has not paid the subscription fee. $\quad(\neg p) \rightarrow(\neg r)$
s_{4} : If the user has not entered a valid password, but has paid the subscription fee, then access is granted $\quad(\neg q \wedge p) \rightarrow r$

The System Specifications will be consistent exactly when the conjunction of the specifications is NOT a contradiction. (i.e., exactly when the conjunction of the specifications is True for at least one combination of truth values of p, q, and r .

p	q	r	$\neg p$	$\neg q$	$\neg r$	$\mathrm{~s}_{1}: p \wedge(\neg q)$	$(p \wedge q)$	$\mathrm{s}_{2}:(p \wedge q) \rightarrow r$	$\mathrm{~s}_{3}:(\neg p) \rightarrow(\neg r)$	$(\neg q \wedge p)$	$\mathrm{s}_{4}:(\neg q \wedge p) \rightarrow r$	$\mathrm{~s}_{1} \wedge \mathrm{~s}_{2} \wedge \mathrm{~s}_{3} \wedge \mathrm{~s}_{4}$
T	T	T	F	F	F	T	T	T	T	F	T	T
T	T	F	F	F	T	T	T	F	T	F	T	F
T	F	T	F	T	F	T	F	T	T	T	T	T
T	F	F	F	T	T	T	F	T	T	T	F	F
F	T	T	T	F	F	F	F	T	F	F	T	F
F	T	F	T	F	T	F	F	T	T	F	T	F
F	F	T	T	T	F	T	F	T	F	F	T	F
F	F	F	T	T	T	T	F	T	T	F	T	T

The fact that "T" appears in the right most column, prevents the conjunction of the system specifications from being a contradiction.

The set of system specifications IS consistent.

