MTH 1125-Test 2 (2pm Class) - Pod B - Solutions
 Fall 2020

Pat Rossi

Name \qquad

Instructions. Show CLEARLY how you arrive at your answers.

1. Compute: $\frac{d}{d x}\left[4 x^{5}+5 x^{4}+4 x^{3}+6 x^{2}+4 x+8 \sqrt{x}+10\right]=$

$$
\begin{aligned}
& \frac{d}{d x}\left[4 x^{5}+5 x^{4}+4 x^{3}+6 x^{2}+4 x+8 \sqrt{x}+10\right] \\
& =4\left[5 x^{4}\right]+5\left[4 x^{3}\right]+4\left[3 x^{2}\right]+6[2 x]+4+8\left[\frac{1}{2} x^{-\frac{1}{2}}\right]+0 \\
& =20 x^{4}+20 x^{3}+12 x^{2}+12 x+4+4 x^{-\frac{1}{2}}
\end{aligned}
$$

i.e., $\frac{d}{d x}\left[4 x^{5}+5 x^{4}+4 x^{3}+6 x^{2}+4 x+8 \sqrt{x}+10\right]=20 x^{4}+20 x^{3}+12 x^{2}+12 x+4+4 x^{-\frac{1}{2}}$
2. Compute: $\frac{d}{d x}\left[\left(3 x^{2}+\cos (x)\right)\left(2 x^{3}+6 x\right)\right]=$
$\frac{d}{d x}[\underbrace{\left(3 x^{2}+\cos (x)\right)}_{1^{\text {st }}} \underbrace{\left(2 x^{3}+6 x\right)}_{2^{\text {nd }}}]=\underbrace{(6 x-\sin (x))}_{1^{\text {st }} \text { prime }} \cdot \underbrace{\left(2 x^{3}+6 x\right)}_{2^{\text {nd }}}+\underbrace{\left(6 x^{2}+6\right)}_{2^{\text {nd }} \text { prime }} \cdot \underbrace{\left(3 x^{2}+\cos (x)\right)}_{1^{\text {st }}}$

$$
\frac{d}{d x}\left[\left(3 x^{2}+\cos (x)\right)\left(2 x^{3}+6 x\right)\right]=(6 x-\sin (x))\left(2 x^{3}+6 x\right)+\left(6 x^{2}+6\right)\left(3 x^{2}+\cos (x)\right)
$$

3. Compute: $\frac{d}{d x}\left[\frac{2 x^{4}+2 x^{3}+5}{4 x^{2}+6 x^{2}+9}\right]=$

$$
\begin{aligned}
& \frac{d}{d x}[\overbrace{\underbrace{\overbrace{2 x^{4}+2 x^{3}+5}^{4 x^{2}+6 x^{2}+9}}_{\text {Bottom }}}^{\text {top }}]=\frac{\overbrace{\left(8 x^{3}+6 x\right)}^{\text {top prime }} \cdot}{\overbrace{\left(4 x^{2}+6 x^{2}+9\right)}^{\text {bottom }}-\overbrace{8 x+12}^{\text {botom prime }} \cdot \overbrace{\left(2 x^{4}+2 x^{3}+5\right)}^{\text {(4x+6 } \left.+6 x^{2}+9\right)^{2}}} \text { top } \\
& \text { i.e., } \frac{d}{d x}\left[\frac{2 x^{4}+2 x^{3}+5}{4 x^{2}+6 x^{2}+9}\right]=\frac{\left(8 x^{3}+6 x\right)\left(4 x^{2}+6 x^{2}+9\right)-(8 x+12)\left(2 x^{4}+2 x^{3}+5\right)}{\left(4 x^{2}+6 x^{2}+9\right)^{2}}
\end{aligned}
$$

4. Compute: $\frac{d}{d x}\left[\left(4 x^{3}+9 x^{2}+24 x\right)^{6}\right]=$ This is the derivative of a function raised to a power.
$\frac{d}{d x}\left[\left(4 x^{3}+9 x^{2}+24 x\right)^{6}\right]=\underbrace{6\left(4 x^{3}+9 x^{2}+24 x\right)^{5}}_{\substack{\text { power rule } \\ \text { as usual }}} \cdot \underbrace{\left(12 x^{2}+18 x+24\right)}_{\substack{\text { derivative } \\ \text { of inner }}}$

$$
\text { i.e., } \frac{d}{d x}\left[\left(4 x^{3}+9 x^{2}+24 x\right)^{6}\right]=6\left(4 x^{3}+9 x^{2}+24 x\right)^{5}\left(12 x^{2}+18 x+24\right)
$$

5. Given that $f(x)=2 x^{2}+x-5$, give the equation of the line tangent to the graph of $f(x)$ at the point $(2,5)$.

We need two things:
i. A point on the line (We have that: $\left.\left(x_{1}, y_{1}\right)=(2,5)\right)$
ii. The slope of the line (This is $f^{\prime}\left(x_{1}\right)$)

$$
f^{\prime}(x)=4 x+1
$$

At the point $\left(x_{1}, y_{1}\right)=(2,5)$, the slope is $f^{\prime}(2)=4(2)+1=9$
We will use the Point-Slope equation of a line:
$\left(y-y_{1}\right)=m\left(x-x_{1}\right) \quad$ (Where m is the slope and $\left(x_{1}, y_{1}\right)$ is a known point on the line.)

Thus, the equation of the line tangent to the graph of $f(x)$ is:
$(y-5)=9(x-2)$

The equation of the line tangent is $(y-5)=9(x-2)$
6. Given that $w=2 x^{2}+8 x$ and that $x=\tan (v)$; compute $\frac{d w}{d v}$ using the Liebniz form of the Chain Rule. (In particular, when doing this exercise, write explicitly the Liebniz form of the chain rule that you are going to use.)

We know:

$$
\begin{aligned}
& \frac{d w}{d x}=4 x+8 \\
& \frac{d x}{d v}=\sec ^{2}(v)
\end{aligned}
$$

We want: $\frac{d w}{d v}$
By the Liebniz form of the Chain Rule:

$$
\frac{d w}{d v}=\frac{d w}{d x} \frac{d x}{d v}=(4 x+8) \sec ^{2}(v)=\underbrace{(4 \tan (v)+8) \sec ^{2}(v)}_{\substack{\text { express solely in terms of } \\ \text { independent variable } v}}
$$

i.e. $\frac{d w}{d v}=(4 \tan (v)+8) \sec ^{2}(v)$
7. Compute: $\frac{d}{d x}\left[\cot \left(4 x^{3}+6 x^{2}\right)\right]=$

Outer:	$=\cot (\quad)$
Deriv. of outer	$=-\csc ^{2}(\quad)$

$$
\text { i.e., } \frac{d}{d x}\left[\cot \left(4 x^{3}+6 x^{2}\right)\right]=-\csc ^{2}\left(4 x^{3}+6 x^{2}\right)\left(12 x^{2}+12 x\right)
$$

8. Compute: $\frac{d}{d x}\left[\left(\frac{5 x^{2}+12 x}{4 x^{2}+8 x+4}\right)^{6}\right]=$

$$
\begin{aligned}
& \frac{d}{d x}[\underbrace{\left(\frac{5 x^{2}+12 x}{4 x^{2}+8 x+4}\right)^{6}}_{(g(x))^{n}}]=\underbrace{6\left(\frac{5 x^{2}+12 x}{4 x^{2}+8 x+4}\right)^{5}}_{\substack{\text { power rule } \\
\text { as usual }}} \cdot \underbrace{\left(\frac{d}{d x}\left[\frac{5 x^{2}+12 x}{4 x^{2}+8 x+4}\right]\right)}_{\begin{array}{c}
\text { diriv of } \\
\text { inner Function }
\end{array}} \\
& =6\left(\frac{5 x^{2}+12 x}{4 x^{2}+8 x+4}\right)^{5} \underbrace{\frac{(10 x+12)\left(4 x^{2}+8 x+4\right)-(8 x+8)\left(5 x^{2}+12 x\right)}{\left(4 x^{2}+8 x+4\right)^{2}}}_{\substack{\text { quotient } \\
\text { rule }}}
\end{aligned}
$$

$$
\text { i.e., } \frac{d}{d x}\left[\left(\frac{5 x^{2}+12 x}{4 x^{2}+8 x+4}\right)^{6}\right]=6\left(\frac{5 x^{2}+12 x}{4 x^{2}+8 x+4}\right)^{5} \frac{(10 x+12)\left(4 x^{2}+8 x+4\right)-(8 x+8)\left(5 x^{2}+12 x\right)}{\left(4 x^{2}+8 x+4\right)^{2}}
$$

9. Compute: $\frac{d}{d x}\left[\sin ^{8}\left(3 x^{3}+8 x\right)\right]=$

Let's rewrite this:
$\frac{d}{d x}\left[\left(\sin \left(3 x^{3}+8 x\right)\right)^{8}\right]$
This is the composition of three functions.
Differentiate the outermost function and evaluate it at everything inside

$$
\frac{d}{d x}\left[\left(\sin \left(3 x^{3}+8 x\right)\right)_{\uparrow}^{d}\right]=
$$

This yields: $8\left(\sin \left(3 x^{3}+8 x\right)\right)^{7}$
Next: Multiply by the derivative of the next outermost function and evaluate it at everything inside of it.

$$
\frac{d}{d x}\left[\left(\underset{\left.\hat{s i n}\left(3 x^{3}+8 x\right)\right)}{8}\right]=\right.
$$

This yields: $8\left(\sin \left(3 x^{3}+8 x\right)\right)^{7} \cdot \cos \left(3 x^{3}+8 x\right)$
Finally: Multiply by the derivative of the innermost function.

This yields: $8\left(\sin \left(3 x^{3}+8 x\right)\right)^{7} \cos \left(3 x^{3}+8 x\right) \cdot\left(9 x^{2}+8\right)$

$$
\text { i.e., } \frac{d}{d x}\left[\left(\sin ^{8}\left(3 x^{3}+8 x\right)\right)\right]=8\left(\sin \left(3 x^{3}+8 x\right)\right)^{7} \cos \left(3 x^{3}+8 x\right) \cdot\left(9 x^{2}+8\right)
$$

Alternatively:

$\frac{d}{d x}\left[\left(\sin ^{8}\left(3 x^{3}+8 x\right)\right)\right] \quad$ In the broadest sense, this is the derivative of a function raised to a power - USE the CHAIN RULE. Re-write!
$\frac{d}{d x}\left[\left(\sin \left(3 x^{3}+8 x\right)\right)^{8}\right] \quad$ This is the derivative of a function, raised to a power

$$
\begin{aligned}
\frac{d}{d x}\left[\left(\sin \left(3 x^{3}+8 x\right)\right)^{8}\right] & =\underbrace{8\left(\sin \left(3 x^{3}+8 x\right)\right)^{7}}_{\substack{\text { power rule } \\
\text { as usual }}} \cdot \underbrace{\left(\frac{d}{d x}\left[\sin \left(3 x^{3}+8 x\right)\right]\right)}_{\substack{\text { derivative } \\
\text { of inner }}} \\
& =8\left(\sin \left(3 x^{3}+8 x\right)\right)^{7} \cdot \underbrace{\left[\cos \left(3 x^{3}+8 x\right) \cdot\left(9 x^{2}+8\right)\right]}_{\substack{\text { Chain } \\
\text { Rule }}}
\end{aligned}
$$

i.e., $\frac{d}{d x}\left[\left(\sin ^{8}\left(3 x^{3}+8 x\right)\right)\right]=8\left(\sin \left(3 x^{3}+8 x\right)\right)^{7} \cos \left(3 x^{3}+8 x\right)\left(9 x^{2}+8\right)$
10. Given that $x^{4}+x^{5} y^{3}=\cos (y), \quad$ compute y^{\prime}
i. Differentiate both sides w.r.t. x

$$
\begin{aligned}
& \frac{d}{d x}[x^{4}+\underbrace{x^{5}}_{1^{\text {st }}} \underbrace{y^{3}}_{2^{\text {nd }}}]=\frac{d}{d x}[\cos (y)] \\
& \Rightarrow 4 x^{3}+(\underbrace{5 x^{4}}_{1^{\text {st prime }}} \cdot \underbrace{y^{3}}_{2^{\text {nd }}}+\underbrace{3 y^{2} y^{\prime}}_{2^{\text {nd }}} \cdot \underbrace{x^{5}}_{1^{\text {st }}})=-\sin (y) \cdot y^{\prime}
\end{aligned}
$$

Simplifying, we have:

$$
4 x^{3}+5 x^{4} y^{3}+3 x^{5} y^{2} y^{\prime}=-\sin (y) y^{\prime}
$$

ii. Solve algebraically for y^{\prime}
a. Get y^{\prime} terms on left side, all other terms on right side

$$
\Rightarrow 3 x^{5} y^{2} y^{\prime}+\sin (y) y^{\prime}=-4 x^{3}-5 x^{4} y^{3}
$$

b. Factor out y^{\prime}

$$
\Rightarrow y^{\prime}\left(3 x^{5} y^{2}+\sin (y)\right)=-4 x^{3}-5 x^{4} y^{3}
$$

c. Divide both sides by the cofactor of y^{\prime}

$$
y^{\prime}=\frac{-4 x^{3}-5 x^{4} y^{3}}{3 x^{5} y^{2}+\sin (y)}=-\frac{4 x^{3}+5 x^{4} y^{3}}{3 x^{5} y^{2}+\sin (y)}
$$

$$
y^{\prime}=\frac{-4 x^{3}-5 x^{4} y^{3}}{3 x^{5} y^{2}+\sin (y)}=-\frac{4 x^{3}+5 x^{4} y^{3}}{3 x^{5} y^{2}+\sin (y)}
$$

11. Given that $f(x)=3 x^{2}-5 x+2$, compute $f^{\prime}(x)$ using the definition of derivative. (i.e., using the "limit process.")

$$
\begin{aligned}
& f^{\prime}(x)=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{\left[3(x+\Delta x)^{2}-5(x+\Delta x)+2\right]-\left[3 x^{2}-5 x+2\right]}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0} \frac{\left[3\left(x^{2}+2 x \Delta x+\Delta x^{2}\right)-5(x+\Delta x)+2\right]-\left[3 x^{2}-5 x+2\right]}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0} \frac{\left[3 x^{2}+6 x \Delta x+3 \Delta x^{2}-5 x-5 \Delta x+2\right]-\left[3 x^{2}-5 x+2\right]}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{6 x \Delta x+3 \Delta x^{2}-5 \Delta x}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0} \frac{\Delta x(6 x+3 \Delta x-5)}{\Delta x}=\lim _{\Delta x \rightarrow 0}(6 x+3 \Delta x-5)=6 x+3(0)-5=6 x-5 \\
& \text { i.e., } f^{\prime}(x)=6 x-5
\end{aligned}
$$

Extra (Wow! 10 Points)

Given that $T^{\prime}(x)=\frac{1}{1+x^{2}} \quad$ (i.e., $\frac{d}{d x}[T(x)]=\frac{1}{1+x^{2}}$; compute $\frac{d}{d x}[T(\tan (x))]$

Outer:	$=T(\quad)$
Deriv. of outer	$=\frac{1}{1+()^{2}}$

$\begin{aligned} & \frac{d}{d x}[T \underbrace{}_{\uparrow \uparrow}(\underbrace{\tan (x)}_{\substack{\text { Deriv of outer, } \\ \text { eval. at inner }}})] \\ & \text { outer inner }\end{aligned} \frac{1}{1+(\tan (x))^{2}} \cdot \underbrace{\sec ^{2}(x)}_{\begin{array}{c}\text { deriv. of } \\ \text { inner }\end{array}}=\frac{\sec ^{2}(x)}{1+(\tan (x))^{2}}=\frac{\sec ^{2}(x)}{\sec ^{2}(x)}=1$
i.e., $\frac{d}{d x}[T(\tan (x))]=\frac{\sec ^{2}(x)}{1+(\tan (x))^{2}}=1$

