Proofs Involving Sets #1 - Solutions

Fall 2009

Pat Rossi

Name _____

Instructions. Prove the following.

1. $(A \setminus B) \subseteq (A \cup B)$

Proof. Let $x \in (A \setminus B)$

 $\Rightarrow x \in A \text{ and } x \notin B$

In particular, $x \in A$

 $\Rightarrow x \in A \text{ or } x \in B$

 $\Rightarrow x \in (A \cup B)$

i.e., $x \in (A \setminus B) \Rightarrow x \in (A \cup B)$

Hence, $(A \setminus B) \subseteq (A \cup B) \blacksquare$

 $2. \ A \cap B = A \Rightarrow A \subseteq B$

Proof. Let the hypothesis be given. (i.e., let $A \cap B = A$).

We need to show that $A \subseteq B$.

So let $x \in A$

 $\Rightarrow x \in A \cap B$ (because $A = A \cap B$ by hypothesis).

 $\Rightarrow x \in A \text{ and } x \in B$

In particular, $x \in B$.

We have just shown that $x \in A \Rightarrow x \in B$.

Hence, $A \subseteq B \blacksquare$

3. $(A \cup B) = B \Rightarrow A \subseteq B$

Proof. Let the hypothesis be given. (i.e., let $(A \cup B) = B$).

We need to show that $A \subseteq B$

So let $x \in A$

 $\Rightarrow x \in A \text{ or } x \in B$

 $\Rightarrow x \in (A \cup B)$

 $\Rightarrow x \in B$ (because $(A \cup B) = B$ by hypothesis).

We have shown that $x \in A \Rightarrow x \in B$.

Hence, $A \subseteq B \blacksquare$

 $4. \ A \subseteq B \Rightarrow B^c \subseteq A^c$

Proof. Let the hypothesis be given. (i.e., let $A \subseteq B$).

We need to show that $B^c \subseteq A^c$.

So let $x \in B^c$

 $\Rightarrow x \notin B$

 $\Rightarrow x \notin A$ (Otherwise, if x were an element of A, then our hypothesis would imply that $x \in B$, contradicting the fact that $x \notin B$.)

 $\Rightarrow x \in A^c$.

We have shown that $x \in B^c \Rightarrow x \in A^c$.

Hence, $B^c \subseteq A^c$.

5. $(A \cap B) \subseteq A$

Proof. Let $x \in (A \cap B)$

 $\Rightarrow x \in A \text{ and } x \in B$

in particular, $x \in A$

i.e., $x \in (A \cap B) \Rightarrow x \in A$

Hence, $(A \cap B) \subseteq A \blacksquare$

6. $A \subseteq (A \cup B)$

Proof. Let $x \in A$

$$\Rightarrow x \in A \text{ or } x \in B$$

$$\Rightarrow x \in (A \cup B)$$

i.e.,
$$x \in A \Rightarrow x \in (A \cup B)$$

Hence,
$$A \subseteq (A \cup B) \blacksquare$$