MTH 4441 Test #1 Fall 2021 Pat Rossi Name _____ | 1. | Define: Group | |----|--| | | | | 2. | Define: Binary operation | | 3. | Define: Integers a and b congruent modulo n . | | 4. | Give an alternate characterization of congruence modulo n . | | 5. | Define: (\mathbb{Z}_n, \oplus) (the additive group of integers modulo n) | | 6. | Define: (U_n, \odot) (the multiplicative group of integers modulo n) | | 7. | Prove: If $(G, *)$ is a group, and a, b are any elements of G , then $(a * b)^{-1} = b^{-1} * a^{-1}$ | | 8. | Define: The order of an element x of a group $(G, *)$ (specify either additive or multiplicative notation.) | |-----|---| | 9. | Prove: The identity element e in a group $(G, *)$ is unique. | | 10. | Construct the group table for (U_5, \odot) | | 11. | In the previous exercise, determine the order of the element 4 | | 12. | Construct the group table for (\mathbb{Z}_4, \oplus) | | 13. | In the previous exercise, determine the order of the element 3 | 14. Determine whether the operation *, given by $a*b=\frac{a}{b^2+1}$ is a closed binary operation on the set $\mathbb Z$