MTH 4441 Test #1

Fall 2021

Pat Rossi

Name _____

1.	Define: Group
2.	Define: Binary operation
3.	Define: Integers a and b congruent modulo n .
4.	Give an alternate characterization of congruence modulo n .
5.	Define: (\mathbb{Z}_n, \oplus) (the additive group of integers modulo n)
6.	Define: (U_n, \odot) (the multiplicative group of integers modulo n)
7.	Prove: If $(G, *)$ is a group, and a, b are any elements of G , then $(a * b)^{-1} = b^{-1} * a^{-1}$

8.	Define: The order of an element x of a group $(G, *)$ (specify either additive or multiplicative notation.)
9.	Prove: The identity element e in a group $(G, *)$ is unique.
10.	Construct the group table for (U_5, \odot)
11.	In the previous exercise, determine the order of the element 4
12.	Construct the group table for (\mathbb{Z}_4, \oplus)
13.	In the previous exercise, determine the order of the element 3

14. Determine whether the operation *, given by $a*b=\frac{a}{b^2+1}$ is a closed binary operation on the set $\mathbb Z$