MTH 1126 - Test #4 - Solutions
SPRING 2024 - 9AM CLASS

Pat Rossi Name

Show CLEARLY how you arrive at your answers.

In Exercises 1-2, Determine convergence/divergence. If the integral converges, find its value.
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3. Determine convergence/divergence of the sequence whose n'™ term is given by:
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(i.e., Determine convergence/divergence of the sequence:
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Observe: lim,_ .o a, = lim,_,., 2% o = 1limy, e 27 =lim, o2 =2

Since lim,, ., a, is a finite real number, the sequence converges to that limit.
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4. Determine convergence/divergence of the given series. (Justify your answer!) If the
series converges, determine its sum.
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“If the series converges, determine its sum.” In general, there are only two
types of convergent series whose sums we can compute: Geometric and “Telescoping
(Collapsing) Sum.”

The series Z —+ is definitely NOT Geometric.
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Maybe it can be written as a “Telescoping (Collapsing) Sum.”

So let’s see if we can express a,, = ﬁ as the difference of two terms.

4 4 — G + Cy
n2—4 (n—2)(n+2) n—2 n+2
: 4 _ Cy
1.e., (n—2)(n+2) = n—2 + n+2

:>m(n—Z)(n—F%:%(n—Z)(n+2)+nC—f2(n—2)(n+2)

+G-w G0 G )t E ) (s )
HEm -+ (s vt e - we)
S R B S
N
ie. ) (h—ma)=l+ts+ti+tit  —Fa- %50 we
n=3



Consequently:
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In Exercises 5-6, determine convergence/divergence of the given series. (Justify your an-
swers!) If the series converges, determine its sum.
5.ol+i+4+5 4+ +(H)"+...

“If the series converges, determine its sum.” In general, there are only two types
of convergent series whose sums we can compute: Geometric and “Telescoping Sum.”

Notice that each term after the first term is equal to % times its predecessor.

The series is geometric with ratio r = %
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The series converges to g
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First, note that lim,,_, a,, = lim,,_, 5n”ﬁ = %

Since lim,, .., a, # 0, the series diverges.
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ie., Z s diverges by the “n'™ term Test.”
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In Exercises 7-9, determine convergence/divergence of the given series. (Justify your an-
swers!)
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There are a few different ways that we can try to do this.
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We can compare Z 3712—1_1 to Z #, which is a convergent p-series with p =2 > 1.
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Since 371 < — and E # converges, E ﬁ converges by the Direct Com-
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parison Test.

(i.e. the fact that the “larger series” converges implies that the “smaller series” con-
verges also.)
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ie., Z ﬁ diverges by the Direct Comparison with Z #
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Alternatively, we can use the Limit Comarison Test.
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Since 0 < lim,,_, ‘Z—:‘ < 00, Both series “do the same thing.”
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Since Z n%, is a convergent p-series (with p = 2), Z 3712;—1 converges also, by the
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Limit Comparison Test.

ie., Z ﬁ diverges by the Limit Comparison Test with Z #
n=4 n=4




1
8. > s
n=1
There may be a few ways to do this.
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First, we can compare g n+r2 with g %, which is the divergent Harmonic Series.
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Since 5 < — and E % diverges, we can conclude nothing from the Direct
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Comparison Test.
i.e., since the “larger series” diverges, this tells us nothing about the “smaller series.”
g g g

Alternatively: Applying the Limit Comparison Test, we have:
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Since 0 < lim,,_, Z—n < 00, Both series “do the same thing.”
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Since Z %, is the divergent Harmonic Series, Z n+r2 diverges also, by the Limit
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Comparison Test.
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Alternatively: [~ n+r2dn = limy_o0 flb
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Z n+r2 diverges by the Integral Test
n=1
Alternatively: Z n+r2 = % + }1 + % + % + ... is the Harmonic Series with the first two

n=1
terms deleted. Since the Harmonic Series diverges, this series diverges also, because
adding or deleting finitely many terms from a series does not change whether the series
converges or diverges.



Z — diverges by Limit Comparison with Z%
n=1 n=2

[e.o]

Or Z #2 diverges by the Integral Test.
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Or, Z n+r2 diverges because it is the Harmonic Series with finitely many terms deleted.
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Determine convergence/divergence of the given series. (Justify your answer!)
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Observe: 'lim, . @, = lim,_ 2n1+1 =0
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Also: —— > 57 ie. a, > Gnpiq
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Finally: the series is alternating.

By the Alternating Series Test, the series Z (—1)" Tl—&-l converges
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Determine convergence/divergence of the given series. (Justify your answerl!)
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The n'™ term, a, is something raised to the n'

candidate for the n'" Root Test.

power, so this series is a good

Observe: lim, .o, /|a,| = lim,_, (ﬁ)n = limy, o (252) = limy oo ()
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ie, lim, .o /|a,| = %

Since lim,,_,, ¥/|a,| < 1, the series converges. by the n'® Root Test.
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(—5’7‘;31)71 converges by the n" Root Test.
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11. Determine convergence/divergence of the given series. (Justify your answer!)
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The n'™® term a,, contains a factorial, so this is a good candidate for the Ratio Test.
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Observe: lim,,_, = lim,,_, = lim,,_, = lim,,_ ﬁ =0
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Since lim,, < 1, the series converges.

Z % converges by the Ratio Test.
n=1




