MTH 1126-Test \#4-Solutions

Spring 2024-9am Class
Pat Rossi
Name \qquad

Show CLEARLY how you arrive at your answers.

In Exercises 1-2, Determine convergence/divergence. If the integral converges, find its value.

1. $\int_{5}^{\infty} \frac{1}{(x-1)^{\frac{3}{2}}} d x=$

$$
\begin{array}{|ll}
\hline u & =x-1 \\
\frac{d u}{d x} & =1 \\
d u & =d x \\
\hline
\end{array}
$$

$$
\begin{aligned}
& \text { When } x=5 ; u=x-1=4 \\
& \text { When } x=\infty ; u=x-1=\infty
\end{aligned}
$$

$$
\begin{aligned}
& \int_{x=5}^{x=\infty} \frac{1}{(x-1)^{\frac{3}{2}}} d x=\int_{u=4}^{u=\infty} \frac{1}{u^{\frac{3}{2}}} d u=\lim _{b \rightarrow \infty} \int_{u=4}^{u=b} u^{-\frac{3}{2}} d u=\lim _{b \rightarrow \infty}\left[\frac{u^{-\frac{1}{2}}}{-\frac{1}{2}}\right]_{u=4}^{u=b}=\lim _{b \rightarrow \infty}\left[-\frac{2}{u^{\frac{1}{2}}}\right]_{u=4}^{u=b} \\
& =\lim _{b \rightarrow \infty}\left[-\frac{2}{b^{\frac{1}{2}}}-\left(-\frac{2}{4^{\frac{1}{2}}}\right)\right]=0-(-1)=1 \\
& \text { i.e., } \int_{5}^{\infty} \frac{1}{(x-1)^{\frac{3}{2}}} d x=1 \quad \text { (Integral Converges) }
\end{aligned}
$$

2. $\int_{5}^{14} \frac{1}{(x-5)^{\frac{1}{2}}} d x=$
(Because $\frac{1}{(x-5)^{\frac{1}{2}}}$ is discontinuous at $x=5$, this is an improper integral.)

$$
\begin{array}{|ll|}
\hline u & =x-5 \\
\frac{d u}{d x} & =1 \\
d u & =d x \\
\hline
\end{array}
$$

When $x=5 ; u=x-5=0$
When $x=14 ; u=x-5=9$

$$
\begin{aligned}
\int_{x=5}^{x=14} \frac{1}{(x-5)^{\frac{1}{2}}} d x & =\int_{u=0}^{u=9} \frac{1}{u^{\frac{1}{2}}} d u=\int_{u=0}^{u=9} u^{-\frac{1}{2}} d u=\lim _{a \rightarrow 0^{+}} \int_{u=a}^{u=9} u^{-\frac{1}{2}} d u=\lim _{a \rightarrow 0^{+}}\left[\frac{u^{\frac{1}{2}}}{\frac{1}{2}}\right]_{u=a}^{u=9}=\lim _{a \rightarrow 0^{+}}\left[2 u^{\frac{1}{2}}\right]_{u=a}^{u=9} \\
& =\lim _{a \rightarrow 0^{+}}\left[2(9)^{\frac{1}{2}}-2(a)^{\frac{1}{2}}\right]=[2(3)-2(0)]=6
\end{aligned}
$$

i.e. $\int_{5}^{14} \frac{1}{(x-5)^{\frac{1}{2}}} d x=6 \quad$ (Integral Converges)
3. Determine convergence/divergence of the sequence whose $n^{\text {th }}$ term is given by:

$$
a_{n}=\frac{2 n}{n+1} .
$$

(i.e., Determine convergence/divergence of the sequence:

$$
\left.\left\{\frac{2 n}{n+1}\right\}_{n=1}^{\infty}=\left\{1, \frac{4}{3}, \frac{3}{2}, \frac{8}{5}, \frac{5}{3}, \frac{12}{7}, \ldots, \frac{2 n}{n+1}, \ldots\right\} .\right)
$$

Observe: $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \frac{2 n}{n+1}=\lim _{n \rightarrow \infty} \frac{2 n}{n}=\lim _{n \rightarrow \infty} 2=2$
Since $\lim _{n \rightarrow \infty} a_{n}$ is a finite real number, the sequence converges to that limit.

$$
\left\{\frac{2 n}{n+1}\right\}_{n=1}^{\infty} \text { converges to } 2 \text {. }
$$

4. Determine convergence/divergence of the given series. (Justify your answer!) If the series converges, determine its sum.
$\sum_{n=3}^{\infty} \frac{4}{n^{2}-4}=\frac{4}{5}+\frac{4}{12}+\frac{4}{21}+\ldots$
"If the series converges, determine its sum." In general, there are only two types of convergent series whose sums we can compute: Geometric and "Telescoping (Collapsing) Sum."

The series $\sum_{n=3}^{\infty} \frac{4}{n^{2}-4}$ is definitely NOT Geometric.
Maybe it can be written as a "Telescoping (Collapsing) Sum."
So let's see if we can express $a_{n}=\frac{4}{n^{2}-4}$ as the difference of two terms.
$\frac{4}{n^{2}-4}=\frac{4}{(n-2)(n+2)}=\frac{C_{1}}{n-2}+\frac{C_{2}}{n+2}$
i.e., $\frac{4}{(n-2)(n+2)}=\frac{C_{1}}{n-2}+\frac{C_{2}}{n+2}$
$\Rightarrow \frac{4}{(n-2)(n+2)}(n-2)(n+2)=\frac{C_{1}}{n-2}(n-2)(n+2)+\frac{C_{2}}{n+2}(n-2)(n+2)$
$\Rightarrow 4=C_{1}(n+2)+C_{2}(n-2)$
$n=2 \Rightarrow 4=C_{1}(4)$
$\Rightarrow C_{1}=1$
$n=-2 \Rightarrow 4=C_{2}(-4)$

$$
\Rightarrow C_{2}=-1
$$

Thus, $\frac{4}{n^{2}-4}=\frac{1}{n-2}-\frac{1}{n+2}$

$$
\begin{aligned}
\Rightarrow \sum_{n=3}^{N} \frac{4}{n^{2}-4}= & \sum_{n=3}^{N}\left(\frac{1}{n-2}-\frac{1}{n+2}\right)=\left(1-\frac{1}{5}\right)+\left(\frac{1}{2}-\frac{1}{6}\right)+\left(\frac{1}{3}-\frac{1}{7}\right)+\left(\frac{1}{4}-\frac{1}{8}\right)+\left(\frac{1}{5}-\frac{1}{9}\right) \\
& +\left(\frac{1}{6}-\frac{1}{10}\right)+\left(\frac{1}{7}-\frac{1}{11}\right)+\ldots+\left(\frac{1}{N-7}-\frac{1}{N-3}\right)+\left(\frac{1}{N-6}-\frac{1}{N-2}\right)+\left(\frac{1}{N-5}-\frac{1}{N-1}\right) \\
& +\left(\frac{1}{N-4}-\frac{1}{N}\right)+\left(\frac{1}{N-3}-\frac{1}{N+1}\right)+\left(\frac{1}{N-2}-\frac{1}{N+2}\right) \\
& =1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\ldots-\frac{1}{N-1}-\frac{1}{N}-\frac{1}{N+1}-\frac{1}{N+2}
\end{aligned}
$$

i.e. $\sum_{n=3}^{N}\left(\frac{1}{n-2}-\frac{1}{n+2}\right)=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\ldots-\frac{1}{N-1}-\frac{1}{N}-\frac{1}{N+1}-\frac{1}{N+2}$

Consequently:

$$
\begin{aligned}
\sum_{n=3}^{\infty} \frac{4}{n^{2}-4} & =\lim _{N \rightarrow \infty} \sum_{n=3}^{N}\left(\frac{1}{n-2}-\frac{1}{n+2}\right) \\
& =\lim _{N \rightarrow \infty}\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\ldots-\frac{1}{N-1}-\frac{1}{N}-\frac{1}{N+1}-\frac{1}{N+2}\right)=\frac{25}{12}
\end{aligned}
$$

i.e., $\sum_{n=3}^{\infty} \frac{4}{n^{2}-4}$ converges and is equal to $\frac{25}{12}$

In Exercises 5-6, determine convergence/divergence of the given series. (Justify your answers!) If the series converges, determine its sum.
5. $1+\frac{2}{5}+\frac{4}{25}+\frac{8}{125}+\ldots+\left(\frac{2}{5}\right)^{n}+\ldots$
"If the series converges, determine its sum." In general, there are only two types of convergent series whose sums we can compute: Geometric and "Telescoping Sum."

Notice that each term after the first term is equal to $\frac{4}{5}$ times its predecessor.
The series is geometric with ratio $r=\frac{2}{5}$
Since $|r|<1$, the series converges to $\frac{1^{\text {st }} \text { term }}{1-r}=\frac{1}{1-\frac{2}{5}}=\frac{1}{\left(\frac{3}{5}\right)}=\frac{5}{3}$

The series converges to $\frac{5}{3}$
6. $\sum_{n=1}^{\infty} \frac{n}{5 n+1}=$

First, note that $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \frac{n}{5 n+1}=\frac{1}{5}$
Since $\lim _{n \rightarrow \infty} a_{n} \neq 0$, the series diverges.
i.e., $\sum_{n=1}^{\infty} \frac{n}{5 n+1}$ diverges by the " nth term Test."

In Exercises 7-9, determine convergence/divergence of the given series. (Justify your answers!)
7. $\sum_{n=1}^{\infty} \frac{1}{3 n^{2}-1}$

There are a few different ways that we can try to do this.
We can compare $\sum_{n=1}^{\infty} \frac{1}{3 n^{2}-1}$ to $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$, which is a convergent p-series with $p=2>1$.
Since $\underbrace{\frac{1}{3 n^{2}-1}}_{a_{n}}<\underbrace{\frac{1}{n^{2}}}_{b_{n}}$ and $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ converges, $\sum_{n=1}^{\infty} \frac{1}{3 n^{2}-1}$ converges by the Direct Comparison Test.
(i.e. the fact that the "larger series" converges implies that the "smaller series" converges also.)
i.e., $\sum_{n=4}^{\infty} \frac{1}{3 n^{2}-1}$ diverges by the Direct Comparison with $\sum_{n=4}^{\infty} \frac{1}{n^{2}}$

Alternatively, we can use the Limit Comarison Test.
Observe: $\lim _{n \rightarrow \infty}\left|\frac{a_{n}}{b_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{\left(\frac{1}{3 n^{2}-1}\right)}{\left(\frac{1}{n^{2}}\right)}\right|=\lim _{n \rightarrow \infty} \frac{n^{2}}{3 n^{2}-1}=\lim _{n \rightarrow \infty} \frac{n^{2}}{3 n^{2}}=\frac{1}{3}$
Since $0<\lim _{n \rightarrow \infty}\left|\frac{a_{n}}{b_{n}}\right|<\infty$, Both series "do the same thing."
Since $\sum_{n=4}^{\infty} \frac{1}{n^{2}}$, is a convergent p-series (with $p=2$), $\sum_{n=4}^{\infty} \frac{1}{3 n^{2}-1}$ converges also, by the

Limit Comparison Test.

i.e., $\sum_{n=4}^{\infty} \frac{1}{3 n^{2}-1}$ diverges by the Limit Comparison Test with $\sum_{n=4}^{\infty} \frac{1}{n^{2}}$
8. $\sum_{n=1}^{\infty} \frac{1}{n+2}$

There may be a few ways to do this.
First, we can compare $\sum_{n=1}^{\infty} \frac{1}{n+2}$ with $\sum_{n=1}^{\infty} \frac{1}{n}$, which is the divergent Harmonic Series.
Since $\underbrace{\frac{1}{n+2}}_{a_{n}}<\underbrace{\frac{1}{n}}_{b_{n}}$ and $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges, we can conclude nothing from the Direct Comparison Test.
(i.e., since the "larger series" diverges, this tells us nothing about the "smaller series.")

Alternatively: Applying the Limit Comparison Test, we have:
$\lim _{n \rightarrow \infty}\left|\frac{a_{n}}{b_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{\left(\frac{1}{n+2}\right)}{\left(\frac{1}{n}\right)}\right|=\lim _{n \rightarrow \infty} \frac{n}{n+2}=1$
Since $0<\lim _{n \rightarrow \infty}\left|\frac{a_{n}}{b_{n}}\right|<\infty$, Both series "do the same thing."
Since $\sum_{n=1}^{\infty} \frac{1}{n}$, is the divergent Harmonic Series, $\sum_{n=1}^{\infty} \frac{1}{n+2}$ diverges also, by the Limit

Comparison Test.

$$
\text { Alternatively: } \begin{aligned}
\int_{1}^{\infty} \frac{1}{n+2} d n & =\lim _{b \rightarrow \infty} \int_{1}^{b} \underbrace{\frac{1}{n+2}}_{\frac{1}{u}} \underbrace{d n}_{d u}=\lim _{b \rightarrow \infty}[\ln (n+2)]_{1}^{b} \\
& =\lim _{b \rightarrow \infty}[\ln (b+2)-\ln (1+2)]=\infty
\end{aligned}
$$

$\sum_{n=1}^{\infty} \frac{1}{n+2}$ diverges by the Integral Test
Alternatively: $\sum_{n=1}^{\infty} \frac{1}{n+2}=\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\ldots$ is the Harmonic Series with the first two terms deleted. Since the Harmonic Series diverges, this series diverges also, because adding or deleting finitely many terms from a series does not change whether the series converges or diverges.

$$
\sum_{n=1}^{\infty} \frac{1}{n+2} \text { diverges by Limit Comparison with } \sum_{n=2}^{\infty} \frac{1}{n}
$$

Or $\sum_{n=1}^{\infty} \frac{1}{n+2}$ diverges by the Integral Test.

Or, $\sum_{n=1}^{\infty} \frac{1}{n+2}$ diverges because it is the Harmonic Series with finitely many terms deleted.
9. Determine convergence/divergence of the given series. (Justify your answer!)
$\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{2 n+1}=\frac{1}{3}-\frac{1}{5}+\frac{1}{7}-\frac{1}{9}+\ldots$
Observe: ${ }^{1} \lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \frac{1}{2 n+1}=0$
Also: $\frac{1}{2 n+1}>\frac{1}{2(n+1)+1}$ i.e. $a_{n}>a_{n+1}$
Finally: the series is alternating.

By the Alternating Series Test, the series $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{2 n+1}$ converges
10. Determine convergence/divergence of the given series. (Justify your answer!)
$\sum_{n=1}^{\infty}\left(\frac{n+3}{5 n+1}\right)^{n}$
The $n^{\text {th }}$ term, a_{n} is something raised to the $n^{\text {th }}$ power, so this series is a good candidate for the $n^{\text {th }}$ Root Test.

Observe: $\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=\lim _{n \rightarrow \infty} \sqrt[n]{\left(\frac{n+3}{5 n+1}\right)^{n}}=\lim _{n \rightarrow \infty}\left(\frac{n+3}{5 n+1}\right)=\lim _{n \rightarrow \infty}\left(\frac{n}{5 n}\right)$

$$
=\lim _{n \rightarrow \infty}\left(\frac{1}{5}\right)=\frac{1}{5}
$$

i.e., $\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=\frac{1}{5}$

Since $\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}<1$, the series converges. by the $n^{\text {th }}$ Root Test.

$$
\sum_{n=1}^{\infty}\left(\frac{n+3}{5 n+1}\right)^{n} \text { converges by the } n^{\text {th }} \text { Root Test. }
$$

11. Determine convergence/divergence of the given series. (Justify your answer!)
$\sum_{n=1}^{\infty} \frac{2^{n}}{n!}$
The $n^{\text {th }}$ term a_{n} contains a factorial, so this is a good candidate for the Ratio Test.
Observe: $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{\frac{2^{n+1}}{(n+1)!}}{\left(\frac{2^{n}}{n!}\right)}\right|=\lim _{n \rightarrow \infty} \frac{2^{n+1}}{(n+1)!} \frac{n!}{2^{n}}=\lim _{n \rightarrow \infty} \frac{2}{(n+1)}=0$
Since $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|<1$, the series converges.
$\sum_{n=1}^{\infty} \frac{2^{n}}{n!}$ converges by the Ratio Test.
