Integrals and Natural Logarithms \#3 - Solutions

Spring 2013
Pat Rossi
Name \qquad

Instructions

Answers appear on the ANSWERS page. Solutions appear on the SOLUTIONS page.

1. Compute: $\int\left(7 x^{4}+x^{3}+5 x+10\right) d x=$

$$
\int\left(7 x^{4}+x^{3}+5 x+10\right) d x=7\left[\frac{x^{5}}{5}\right]+\left[\frac{x^{4}}{4}\right]+5\left[\frac{x^{2}}{2}\right]+10 x+C
$$

i.e., $\int\left(7 x^{4}+x^{3}+5 x+10\right) d x=\frac{7}{5} x^{5}+\frac{1}{4} x^{4}+\frac{5}{2} x^{2}+10 x+C$

Don't forget the " +C "
2. Compute: $\int\left(8 \sec (x) \tan (x)+5 \csc ^{2}(x)\right) d x=$

$$
\int\left(8 \sec (x) \tan (x)+5 \csc ^{2}(x)\right) d x=8[\sec (x)]+5[-\cot (x)]+C
$$

i.e., $\int\left(8 \sec (x) \tan (x)+5 \csc ^{2}(x)\right) d x=8 \sec (x)-5 \cot (x)+C$ Don't forget the " +C "
3. Compute: $\int_{x=-1}^{x=1}\left(x^{3}+9 x^{2}+3\right) d x=$

$$
\begin{aligned}
& \int_{x=-1}^{x=1} \underbrace{\left(x^{3}+9 x^{2}+3\right)}_{f(x)} d x=\underbrace{\left[\frac{1}{4} x^{4}+3 x^{3}+3 x\right]_{x=-1}^{x=1}}_{F(x)} \\
& =\underbrace{\left[\frac{1}{4}(1)^{4}+3(1)^{3}+3(1)\right]}_{F(1)}-\underbrace{\left[\frac{1}{4}(-1)^{4}+3(-1)^{3}+3(-1)\right]}_{F(-1)}=12 \\
& \text { i.e., } \int_{x=-1}^{x=1}\left(x^{3}+9 x^{2}+3\right) d x=12
\end{aligned}
$$

4. Compute: $\int \sqrt{4 x^{3}+6 x}\left(6 x^{2}+3\right) d x \underbrace{=}_{\text {Re-write }} \int\left(4 x^{3}+6 x\right)^{\frac{1}{2}}\left(6 x^{2}+3\right) d x=$
5. Is u-sub appropriate?
a. Is there a composite function?

Yes! $\left(4 x^{3}+6 x\right)^{\frac{1}{2}} \quad$ (A function raised to a power is always a composite function!)
Let $u=$ the "inner" of the composite function
$\Rightarrow u=\left(4 x^{3}+6 x\right)$
b. Is there an (approximate) function/derivative pair?

$$
\text { Yes! } \quad \underbrace{\left(4 x^{3}+6 x\right)}_{\text {function }}----\rightarrow \underbrace{\left(6 x^{2}+3\right)}_{\text {deriv }}
$$

Let $u=$ the "function" of the function/deriv pair
$\Rightarrow u=\left(4 x^{3}+6 x\right)$
c. Is the "function" of the function/deriv pair the same as the "inner" of the composite function?
(i.e., do criteria \mathbf{a} and \mathbf{b} suggest the same choice of u ?)

Yes! \Rightarrow u-substitution is appropriate
2. Compute $d u$

$$
\begin{aligned}
u & =4 x^{3}+6 x \\
\Rightarrow \frac{d u}{d x} & =12 x^{2}+6 \\
\Rightarrow d u & =\left(12 x^{2}+6\right) d x \\
\Rightarrow \frac{1}{2} d u & =\left(6 x^{2}+3\right) d x
\end{aligned}
$$

3. Analyze in terms of u and $d u$

$$
\int \underbrace{\left(4 x^{3}+6 x\right)^{\frac{1}{2}}}_{u^{\frac{1}{2}}} \underbrace{\left(6 x^{2}+3\right) d x}_{\frac{1}{2} d u}=\int u^{\frac{1}{2}} \cdot \frac{1}{2} d u=\frac{1}{2} \int u^{\frac{1}{2}} d u
$$

4. Integrate (in terms of u).

$$
\frac{1}{2} \int u^{\frac{1}{2}} d u=\frac{1}{2}\left[\frac{u^{\frac{3}{2}}}{\frac{3}{2}}\right]+C=\frac{1}{3} u^{\frac{3}{2}}+C
$$

5. Re-express in terms of the original variable, x.

$$
\begin{aligned}
& \int \sqrt{4 x^{3}+6 x}\left(6 x^{2}+3\right) d x=\underbrace{\frac{1}{3}\left(4 x^{3}+6 x\right)^{\frac{3}{2}}+C}_{\frac{1}{3} u^{\frac{3}{2}}+C} \\
& \text { i.e., } \int \sqrt{4 x^{3}+6 x}\left(6 x^{2}+3\right) d x=\frac{1}{3}\left(4 x^{3}+6 x\right)^{\frac{3}{2}}+C
\end{aligned}
$$

5. Compute: $\int \sec \left(x^{2}\right) \tan \left(x^{2}\right) x d x=$
6. Is u-sub appropriate?
a. Is there a composite function?

$$
\text { Yes! } \sec \left(x^{2}\right) \tan \left(x^{2}\right)
$$

Let $u=$ the "inner" of the composite function

$$
\Rightarrow u=\left(x^{2}\right)
$$

b. Is there an (approximate) function/derivative pair?

$$
\text { Yes! } \quad \underbrace{\left(x^{2}\right)}_{\text {function }}----\rightarrow \underbrace{(x)}_{\text {deriv }}
$$

Let $u=$ the "function" of the function/deriv pair

$$
\Rightarrow u=\left(x^{2}\right)
$$

c. Is the "function" of the function/deriv pair the same as the "inner" of the composite function?
(i.e., do criteria \mathbf{a} and \mathbf{b} suggest the same choice of u ?)

Yes! \Rightarrow u-substitution is appropriate
2. Compute $d u$

$$
\begin{aligned}
u & =x^{2} \\
\Rightarrow \frac{d u}{d x} & =2 x \\
\Rightarrow d u & =2 x d x \\
\Rightarrow \frac{1}{2} d u & =x d x
\end{aligned}
$$

3. Analyze in terms of u and $d u$
$\int \underbrace{\sec \left(x^{2}\right) \tan \left(x^{2}\right)}_{\sec (u) \tan (u)} \underbrace{x d x}_{\frac{1}{2} d u}=\int \sec (u) \tan (u) \frac{1}{2} d u=\frac{1}{2} \int \sec (u) \tan (u) d u$
4. Integrate (in terms of u).
$\frac{1}{2} \int \sec (u) \tan (u) d u=\frac{1}{2}[\sec (u)]+C=\frac{1}{2} \sec (u)+C$
5. Re-express in terms of the original variable, x.

$$
\begin{aligned}
& \int \sec \left(x^{2}\right) \tan \left(x^{2}\right) x d x=\underbrace{\frac{1}{2} \sec \left(x^{2}\right)+C}_{\frac{1}{2} \sec (u)+C} \\
& \text { i.e., } \int \sec \left(x^{2}\right) \tan \left(x^{2}\right) x d x=\frac{1}{2} \sec \left(x^{2}\right)+C
\end{aligned}
$$

6. Compute: $\int \frac{3 x^{2}+x+2}{2 x^{3}+x^{2}+4 x} d x \underbrace{=}_{\text {re-write }} \int \frac{1}{2 x^{3}+x^{2}+4 x}\left(3 x^{2}+x+2\right) d x$

Remark: Note that we have an approximate function/derivative pair, with the "function" in the denominator. This usually indicates that u-substitution is appropriate, with the result being a natural logarithm.

1. Is u-sub appropriate?
a. Is there a composite function?

Yes! $\frac{1}{2 x^{3}+x^{2}+4 x}$ is the same as $\left(2 x^{3}+x^{2}+4 x\right)^{-1}$, so it is a function raised to a power.
Let $u=$ the "inner" of the composite function
$\Rightarrow u=\left(2 x^{3}+x^{2}+4 x\right)$
b. Is there an (approximate) function/derivative pair?

Let $u=$ the "function" of the function/deriv pair
$\Rightarrow u=\left(2 x^{3}+x^{2}+4 x\right)$
c. Is the "function" of the function/deriv pair the same as the "inner" of the composite function?
(i.e., do criteria \mathbf{a} and \mathbf{b} suggest the same choice of u ?)

Yes! \Rightarrow u-substitution is appropriate
2. Compute $d u$

$$
\begin{aligned}
u & =2 x^{3}+x^{2}+4 x \\
\Rightarrow \frac{d u}{d x} & =6 x^{2}+2 x+4 \\
\Rightarrow d u & =\left(6 x^{2}+2 x+4\right) d x \\
\Rightarrow \frac{1}{2} d u & =\left(3 x^{2}+x+2\right) d x
\end{aligned}
$$

3. Analyze in terms of u and $d u$

$$
\int \underbrace{\frac{1}{2 x^{3}+x^{2}+4 x}}_{\frac{1}{u}} \underbrace{\left(3 x^{2}+x+2\right) d x}_{\frac{1}{2} d u}=\int \frac{1}{u} \cdot \frac{1}{2} d u=\frac{1}{2} \int \frac{1}{u} d u
$$

4. Integrate (in terms of u).
$\frac{1}{2} \int \frac{1}{u} d u=\frac{1}{2}[\ln |u|]+C=\frac{1}{2} \ln |u|+C$
5. Re-express in terms of the original variable, x.

$$
\begin{aligned}
& \int \frac{3 x^{2}+x+2}{2 x^{3}+x^{2}+4 x} d x=\underbrace{\frac{1}{2} \ln \left|2 x^{3}+x^{2}+4 x\right|+C}_{\frac{1}{2} \ln |u|+C} \\
& \text { i.e., } \int \frac{3 x^{2}+x+2}{2 x^{3}+x^{2}+4 x} d x=\frac{1}{2} \ln \left|2 x^{3}+x^{2}+4 x\right|+C
\end{aligned}
$$

7. Compute: $\frac{d}{d x}[\ln (\tan (x))]=$

$$
\underbrace{\frac{d}{d x}[\ln (\tan (x))]}_{\frac{d}{d x}[\ln (g(x))]}=\underbrace{\frac{1}{\tan (x)}}_{\frac{1}{g(x)}} \cdot \underbrace{\sec ^{2}(x)}_{g^{\prime}(x)}=\frac{\sec ^{2}(x)}{\tan (x)}
$$

$$
\text { i.e., } \frac{d}{d x}[\ln (\tan (x))]=\frac{\sec ^{2}(x)}{\tan (x)}
$$

8. Compute: $\frac{d}{d x}\left[\ln \left(8 x^{3}+5 x\right)\right]=$

$$
\underbrace{\frac{d}{d x}\left[\ln \left(8 x^{3}+5 x\right)\right]}_{\frac{d}{d x}[\ln (g(x))]}=\underbrace{\frac{1}{8 x^{3}+5 x}}_{\frac{1}{g(x)}} \cdot \underbrace{\left(24 x^{2}+5\right)}_{g^{\prime}(x)}=\frac{24 x^{2}+5}{8 x^{3}+5 x}
$$

i.e., $\frac{d}{d x}\left[\ln \left(8 x^{3}+5 x\right)\right]=\frac{24 x^{2}+5}{8 x^{3}+5 x}$
9. Compute: $\frac{d}{d x}[\ln (x \sin (x))]=$

Remark: We can compute this derivative directly, in it's current form, but it would be much easier to use the algebraic properties of natural logarithms to simplify the expression first.

$$
\frac{d}{d x}[\ln (x \sin (x))]=\underbrace{\frac{d}{d x}[\ln (x)+\ln (\sin (x))]}_{\ln (a b)=\ln (a)+\ln (b)}
$$

NOW we're ready to compute the derivative!
$\frac{d}{d x}[\ln (x \sin (x))]=\frac{d}{d x}[\ln (x)+\ln (\sin (x))]=\left[\frac{1}{x}+\frac{1}{\sin (x)} \cos (x)\right]=\frac{1}{x}-\cot (x)$
i.e., $\frac{d}{d x}[\ln (x \sin (x))]=\frac{1}{x}+\cot (x)$
10. Compute: $\int_{x=0}^{x=1}\left(1-x^{2}\right)^{2} x d x=$

1. Is u-sub appropriate?
a. Is there a composite function?

Yes! $\quad\left(1-x^{2}\right)^{2} \quad$ (A function raised to a power is always a composite function!)
Let $u=$ the "inner" of the composite function
$\Rightarrow u=\left(1-x^{2}\right)$
b. Is there an (approximate) function/derivative pair?

Yes! $\underbrace{\left(1-x^{2}\right)}_{\text {function }}----\rightarrow \underbrace{x}_{\text {deriv }}$
Let $u=$ the "function" of the function/deriv pair
$\Rightarrow u=\left(1-x^{2}\right)$
c. Is the "function" of the function/deriv pair the same as the "inner" of the composite function?
(i.e., do criteria \mathbf{a} and \mathbf{b} suggest the same choice of u ?)

Yes! $\Rightarrow \mathrm{u}$-substitution is appropriate
2. Compute $d u$

$$
\begin{aligned}
u & =1-x^{2} \\
\Rightarrow \frac{d u}{d x} & =-2 x \\
\Rightarrow d u & =-2 x d x \\
\Rightarrow-\frac{1}{2} d u & =x d x
\end{aligned}
$$

When $x=0, u=1-x^{2}=1-(0)^{2}=1$
When $x=1, u=1-x^{2}=1-(1)^{2}=0$
3. Analyze in terms of u and $d u$
$\int_{x=0}^{x=1} \underbrace{\left(1-x^{2}\right)^{2}}_{u^{2}} \underbrace{x d x}_{-\frac{1}{2} d u}=\int_{u=1}^{u=0} u^{2} \cdot\left(-\frac{1}{2}\right) d u=-\frac{1}{2} \int_{u=1}^{u=0} u^{2} d u$
Don't forget to re-write the limits of integration in terms of u !
4. Integrate (in terms of u).

$$
-\frac{1}{2} \int_{u=1}^{u=0} u^{2} d u=-\frac{1}{2}\left[\frac{u^{3}}{3}\right]_{u=1}^{u=0}=-\frac{1}{6}\left[u^{3}\right]_{u=1}^{u=0}=\underbrace{-\frac{1}{6}(0)^{3}}_{F(0)}-\underbrace{\left(-\frac{1}{6}(1)^{3}\right)}_{F(1)}=0-\left(-\frac{1}{6}\right)=\frac{1}{6}
$$

$$
\text { i.e., } \int_{x=0}^{x=1}\left(1-x^{2}\right)^{2} x d x=\frac{1}{6}
$$

