MTH 4441 Homework #2 Groups - Solutions

Fall 2022

Pat Rossi

Name _

For Exercises 1-10, decide whether each of the given sets is a group with respect to the given operation.

If it is NOT a group, state at least one of the group axioms that fails to hold.

Group Axioms for (G, *)

- The Binary Operator * is **closed** on G.
- * is associative
- (G, *) has an identity element
- Each element $x \in G$ has an inverse.
- 1. The set \mathbb{Z}^+ of all positive integers with operation addition.

 $(\mathbb{Z}^+, +)$ is **NOT a group.** $(\mathbb{Z}^+, +)$ has no additive identity. (The additive identity would be 0, but $0 \notin \mathbb{Z}$.)

Also: The additive inverse of each element $n \in \mathbb{Z}^+$ is the *negative* integer -n, which is NOT an element of \mathbb{Z}^+ .

2. The set \mathbb{Z}^+ of all positive integers with operation multiplication.

 (\mathbb{Z}^+, \cdot) is **NOT a group.** The multiplicative inverse of each element $n \in \mathbb{Z}^+$ is the rational number $\frac{1}{n}$, which is NOT an element of \mathbb{Z}^+ for n > 1.

3. The set \mathbb{Q} of all rational numbers with operation addition.

 $(\mathbb{Q},+)$ IS a group.

The operation + is closed on \mathbb{Q} , since the sum of two rational numbers is also a rational number.

 $0 \in \mathbb{Q}$ is the additive identity.

Given $\frac{m}{n} \in \mathbb{Q}$, the element $-\frac{m}{n} \in \mathbb{Q}$ is the additive inverse.

The operation + is associative (We know this because The operation + is associative for ALL real numbers.)

4. The set \mathbb{Q}' of all irrational numbers with operation addition.

 $(\mathbb{Q}', +)$ is **NOT** a group.

The operation + is **not closed** on \mathbb{Q}' . (To see this, observe that the sum of irrational numbers 0.1011011101110... and 0.01001000100001... is the rational number 0.1111111111111...)

Also: Since the *rational* number 0 is the additive identity for ALL subsets of the Real Numbers under addition, $(\mathbb{Q}', +)$ has **no additive identity**, since $0 \notin \mathbb{Q}'$

5. The set of all positive irrational numbers with operation multiplication.

 $((\mathbb{Q}')^+, \cdot)$ is **NOT** a group.

The operation \cdot is **not closed** on \mathbb{Q}' . (To see this, observe that the product of irrational numbers $\sqrt{2}$ and $\sqrt{2}$ is the rational number 2)

Also: Since the *rational* number 1 is the multiplicative identity for ALL subsets of the Real Numbers under multiplication, , $((\mathbb{Q}')^+, \cdot)$ has **no additive identity**, since $1 \notin \mathbb{Q}'$.

6. The set \mathbb{Q}^+ of all positive rational numbers with operation multiplication.

 (\mathbb{Q}^+,\cdot) IS a group.

The operation \cdot is closed on \mathbb{Q}^+ , since the product of two positive rational numbers is also a positive rational number.

 $1 \in \mathbb{Q}^+$ is the multiplicative identity.

Given $\frac{m}{n} \in \mathbb{Q}^+$, the element $\frac{n}{m} \in \mathbb{Q}^+$ is the multiplicative inverse.

The operation \cdot is associative (We know this because The operation \cdot is associative for ALL real numbers.)

7. The set \mathbf{E} of all even integers with operation addition.

 $(\mathbf{E},+)$ IS a group.

The operation + is closed on \mathbf{E} , since the sum of two even numbers is also an even number.

 $0 \in \mathbf{E}$ is the additive identity

Given the even number $2n \in \mathbf{E}$, the even number $-2n \in \mathbf{E}$ is the additive inverse.

The operation + is associative (We know this because The operation + is associative for ALL real numbers.)

8. The set **E** of all even integers with operation multiplication.

 (\mathbf{E}, \cdot) is NOT a group.

The operation \cdot IS closed on **E**, since the product of two even numbers is also an even number.

HOWEVER, the multiplicative identity $1 \notin \mathbf{E}$.

ALSO, given the element $2n \in \mathbf{E}$, the multiplicative inverse, $\frac{1}{2n} \notin \mathbf{E}$.

9. The set of all multiples of 5 with operation addition.

The set is denoted $5\mathbb{Z} = \{0, \pm 5, \pm 10, \pm 15, ...\}$

 $(5\mathbb{Z},+)$ IS a group.

+ is closed on 5Z. To see this, observe that given two elements 5j and 5k in 5Z, their sum $5j + 5k = 5(j + k) \in 5\mathbb{Z}$

The element $0 = 5 \cdot 0 \in 5\mathbb{Z}$ is the additive identity.

Given $5k \in 5\mathbb{Z}$, the element $-5k \in 5\mathbb{Z}$ is the additive inverse.

The operation + is associative (We know this because The operation + is associative for ALL real numbers.)

10. The set of all multiples of 5 with operation multiplication.

$(5\mathbb{Z}, \cdot)$ is **NOT** a group.

· is closed on 5Z. To see this, observe that given two elements 5j and 5k in 5Z, their product $(5j)(5k) = 25jk = 5(5jk) \in 5\mathbb{Z}$

HOWEVER, the multiplicative identity $1 \notin 5\mathbb{Z}$..

ALSO, given $n \in 5\mathbb{Z}$, the multiplicative inverse $\frac{1}{n} \notin 5\mathbb{Z}$.

In Exercises 11-12, the given table defines an operation of multiplication on the set $S = \{e, a, b, c\}$.

In each case, find a group axiom that fails to hold, and thereby show that S is **not** a group.

11.					
	•	e	a	b	c
	e	e	a	b	c
	a	a	b	a	b
	b	b	c	b	c
	c	c	e	c	e

Here are a few things:

Notice that the identity element e does not appear in the row headed by a. This means that a does not have a right inverse.

Notice that the identity element e does not appear in the row or column headed by b. This means that b has neither a right inverse nor a left inverse.

Notice that the identity e appears twice in the row headed by c – once in the column headed by a and once in the column headed by c. This means that both a and c are right inverses of c, violating the fact that an inverse is unique.

12.

•	e	a	b	c
e	e	a	b	С
a	e	a	b	c
b	e	a	b	c
c	e	a	b	c

Here are a few things:

All entries in the column headed by e show that e is NOT a right identity. (i.e., $xe \neq x$ for any element except x = e.) So, there is NO two-sided identity.

The fact that xy = y for all elements $x, y \in S$, tell us that each element $x \in S$ is a left identity, contradicting the fact that such an identity should be unique.

The facts that:

 $\begin{aligned} &xa \neq e, \forall x \in S \\ &xb \neq e, \forall x \in S \\ &xc \neq e, \forall x \in S \end{aligned}$

tell us that none of the elements a, b, c have a left inverse.

In exercises, 13-18, let the binary operation be defined on \mathbb{Z} by the rule given. Determine in each case whether (\mathbb{Z} , *) is a group. If it is a group, determine if it is an abelian group. If it is NOT a group, state which conditions, if any fail to hold.

13. x * y = x + y + 1

This IS a group.

* is closed on \mathbb{Z}

Find the identity: We want $e \in \mathbb{Z}$ such that x * e = x + e + 1 = x

 $\Rightarrow x + e + 1 = x \Rightarrow e + 1 = 0 \Rightarrow e = -1$

Check: x * e = x + e + 1 = x + (-1) + 1 = x

Also: e * x = e + x + 1 = (-1) + x + 1 = x

i.e. For e = -1, we have: e * x = x = x * e (i.e. e = -1 IS the identity)

Find the inverse: (i.e., For $x \in \mathbb{Z}$, find x^{-1})

We want x^{-1} such that $x * x^{-1} = x + x^{-1} + 1 = e = -1$

 $\Rightarrow x+x^{-1}+1=-1 \Rightarrow x+x^{-1}=-2 \Rightarrow x^{-1}=-2-x$

Check: $x * x^{-1} = x + x^{-1} + 1 = x + (-2 - x) + 1 = -1 = e$

Also: $x^{-1} * x = x^{-1} + x + 1 = (-2 - x) + x + 1 = -1 = e$

i.e., $x * x^{-1} = e = x * x^{-1}$ (i.e., Given $x \in \mathbb{Z}, x^{-1} = -2 - x$)

Regarding **associativity**:

$$(x * y) * z = (x + y + 1) * z = (x + y + 1) + z + 1 = x + y + z + 1 + 1 = x + (y + z + 1) + 1$$
$$= x * (y + z + 1) = x * (y * z)$$

i.e., (x * y) * z = x * (y * z) (* is associative)

Furthermore, $(\mathbb{Z}, *)$ **IS an abelian group.**

This will follow, if we can show that x * y = y * x

Observe: x * y = (x + y + 1) = (y + x + 1) = y * x

This IS a group.

 \ast is closed on \mathbbm{Z}

e = 1 is the identity

Find the identity: We want $e \in \mathbb{Z}$ such that x * e = x + e - 1 = x

 $\Rightarrow x + e - 1 = x \Rightarrow e - 1 = 0 \Rightarrow e = 1$

Check: x * e = x + e - 1 = x + (1) - 1 = x

Also: e * x = e + x - 1 = (1) + x - 1 = x

i.e. For e = 1, we have: e * x = x = x * e (i.e. e = 1 IS the identity)

Find the inverse: (i.e., For $x \in \mathbb{Z}$, find x^{-1})

We want x^{-1} such that $x * x^{-1} = x + x^{-1} - 1 = e = 1$

 $\Rightarrow x + x^{-1} - 1 = 1 \Rightarrow x + x^{-1} = 2 \Rightarrow x^{-1} = 2 - x$

Check: $x * x^{-1} = x + x^{-1} - 1 = x + (2 - x) - 1 = 1 = e$

Also: $x^{-1} * x = x^{-1} + x - 1 = (2 - x) + x - 1 = 1 = e$

i.e., $x * x^{-1} = e = x * x^{-1}$ (i.e., Given $x \in \mathbb{Z}, x^{-1} = 2 - x$)

Regarding Associativity:

$$(x * y) * z = (x + y - 1) * z = (x + y - 1) + z - 1 = x + y + z - 1 - 1 = x + (y + z - 1) - 1$$
$$= x * (y + z - 1) = x * (y * z)$$

i.e., (x * y) * z = x * (y * z) (* is associative)

Furthermore, $(\mathbb{Z}, *)$ IS an abelian group.

This will follow, if we can show that x * y = y * x

Observe: x * y = (x + y - 1) = (y + x - 1) = y * x

This is NOT a group.

* is closed on \mathbb{Z}

Is there an identity? (i.e., is there an element e such that e * x = x = x * e?)

Observe: $x * e = x + xe = x, \Rightarrow xe = 0$

 $\Rightarrow xe = 0 \Rightarrow e = 0$

i.e., x * 0 = x, so e = 0 may be the identity.

Let's check to see if 0 * x = x.

 $0 * x = 0 + 0 \cdot x = 0.$

i.e., x * 0 = x, but 0 * x = 0.

So e = 0 is NOT a (two-sided) identity

i.e., There is no identity

Hence, given $x \in \mathbb{Z}$, there can be no x^{-1} .

Given $x \in \mathbb{Z}, x^{-1}$ Does Not Exist)

Regarding Associativity:

$$(x * y) * z = (x + xy) * z = (x + xy) + (x + xy) z = x + xy + xz + xyz$$

 $x * (y * z) = x * (y + yz) = x + x (y + yz) = x + xy + xyz$
i.e., $(x * y) * z \neq x * (y * z)$ (* is NOT associative)

16. x * y = xy + y

This is NOT a group.

* is closed on \mathbb{Z}

Is there an identity? (i.e., is there an element e such that e * x = x = x * e?)

Observe: $x * e = xe + e = x \Rightarrow (x+1)e = x \Rightarrow e = \frac{x}{x+1}$

i.e., $e = \frac{x}{x+1}$

Note that e is NOT a constant value - it's value depends on the value of x. So there is no single element e such that x * e = x.

Therefore, there is no identity

Hence, given $x \in \mathbb{Z}$, there can be no x^{-1} .

Given $x \in \mathbb{Z}, x^{-1}$ Does Not Exist)

Regarding Associativity:

$$(x * y) * z = (xy + y) * z = (xy + y) z + z = xyz + yz + z$$

$$x * (y * z) = x * (yz + z) = x (yz + z) + (yz + z) = xyz + xz + yz + z$$

i.e., $(x * y) * z \neq x * (y * z)$ (* is **NOT** associative)

17. x * y = x + xy + y

This is NOT a group.

* is closed on \mathbb{Z}

Is there an identity? (i.e., is there an element e such that e * x = x = x * e?)

Observe: $x * e = x + xe + e = x \Rightarrow xe + e = 0 \Rightarrow (x + 1)e = 0 \Rightarrow e = \frac{0}{x+1}$

i.e., e = 0

Also:

 $e * x = e + ex + x = x \Rightarrow e + ex = 0 \Rightarrow e(1 + x) = 0 \Rightarrow e = \frac{0}{1 + x}$

i.e., e = 0

Next, $\forall x \in \mathbb{Z}$, does there exist an x^{-1} ?

Consider:

$$x * x^{-1} = x + xx^{-1} + x^{-1} = 0 \Rightarrow xx^{-1} + x^{-1} = -x \Rightarrow (x+1)x^{-1} = -x$$

 $\Rightarrow x^{-1} = \frac{-x}{x+1}$

Note that a consequence of this result is that x^{-1} is undefined for x = -1. (i.e., x = -1 has no inverse.)

x inverse does not exist for every element in $\mathbb Z$

Regarding Associativity:

(x * y) * z = (x + xy + y) * z = (x + xy + y) + (x + xy + y) z + z = x + xy + y + xz + xyz + yz + z

= x + y + z + xy + xz + yz + xyz

x * (y * z) = x * (y + yz + z) = x + x (y + yz + z) + (y + yz + z) = x + xy + xyz + xz + y + yz + z

= x + y + z + xy + xz + yz + xyz

i.e., (x * y) * z = x * (y * z) (* IS associative)

18. x * y = x - y

This is NOT a group.

* is closed on \mathbbm{Z}

Is there an identity? (i.e., is there an element e such that e * x = x = x * e?)

Observe: $x * e = x - e = x \Rightarrow -e = 0 \Rightarrow e = 0$

i.e., e = 0

Also:

 $e \ast x = e - x = x \Rightarrow e = 2x$

i.e., e = 2x

The left and right sided identities are not equal, so there is **NO Identity.**

Consequently, $\forall x \in \mathbb{Z}$, there does NOT exist an inverse.

Regarding Associativity:

$$(x * y) * z = (x + xy + y) * z = (x + xy + y) + (x + xy + y) z + z = xz + xyz + yz + z$$

 $x*(y * z) = x*(y + yz + z) = x + x (y + yz + z) + (y + yz + z) = x + xy + xyz + y + yz + z$
i.e., $(x * y) * z \neq x * (y * z)$ (* is NOT associative)

In exercises, 19-21, Fill in the group table for (G, *) in as many different ways as possible.

10	*	0	a		
19.	*	e			
	e				
	a				
	*	e	a		
	e	e	a		This is the only possibility.
	a	a	e		
20.	*	e	a	b	_
	e				-
	a				_
	b				
	*	e	a	b	_
	e	e	a	b	- This is the only possibility
	a	a	b	e	
	b	b	e	a	

21.	*	e	a	b	c
	e				
	a				
	b				
	c				

 $\begin{array}{c}
\ast \\
\hline
e \\
\hline
a \\
\hline
b
\end{array}$

c

e	a	b	c	 *	e	a	b	c	*	e	a	b	c	*	e	a	b	c
e	a	b	c	 e	e	a	b	c	e	e	a	b	c	e	e	a	b	С
a	b	c	e	a	a	c	e	b	a	a	c	e	b	a	a	e	c	b
b	С	e	a	b	b	e	a	c	b	b	e	c	a	b	b	c	a	e
c	e	a	b	c	c	b	c	e	c	c	b	a	e	c	c	b	e	a

*	e	a	b	c
e	e	a	b	С
a	a	e	С	b
b	b	С	e	a
c	c	b	a	e

are all possibilities.