MTH 4441 Homework \#2 Groups - Solutions

FALL 2022
Pat Rossi
Name \qquad

For Exercises 1-10, decide whether each of the given sets is a group with respect to the given operation.

If it is NOT a group, state at least one of the group axioms that fails to hold.
Group Axioms for $(G, *)$

- The Binary Operator $*$ is closed on G.
- * is associative
- $(G, *)$ has an identity element
- Each element $x \in G$ has an inverse.

1. The set \mathbb{Z}^{+}of all positive integers with operation addition.
$\left(\mathbb{Z}^{+},+\right)$is NOT a group. $\left(\mathbb{Z}^{+},+\right)$has no additive identity. (The additive identity would be 0 , but $0 \notin \mathbb{Z}$.)

Also: The additive inverse of each element $n \in \mathbb{Z}^{+}$is the negative integer $-n$, which is NOT an element of \mathbb{Z}^{+}.
2. The set \mathbb{Z}^{+}of all positive integers with operation multiplication.
$\left(\mathbb{Z}^{+}, \cdot\right)$ is NOT a group. The multiplicative inverse of each element $n \in \mathbb{Z}^{+}$is the rational number $\frac{1}{n}$, which is NOT an element of \mathbb{Z}^{+}for $n>1$.
3. The set \mathbb{Q} of all rational numbers with operation addition.
$(\mathbb{Q},+)$ IS a group.
The operation + is closed on \mathbb{Q}, since the sum of two rational numbers is also a rational number.
$0 \in \mathbb{Q}$ is the additive identity.
Given $\frac{m}{n} \in \mathbb{Q}$, the element $-\frac{m}{n} \in \mathbb{Q}$ is the additive inverse.
The operation + is associative (We know this because The operation + is associative for ALL real numbers.)
4. The set \mathbb{Q}^{\prime} of all irrational numbers with operation addition.
$\left(\mathbb{Q}^{\prime},+\right)$ is NOT a group.
The operation + is not closed on \mathbb{Q}^{\prime}. (To see this, observe that the sum of irrational numbers $0.10110111011110 \ldots$ and $0.01001000100001 \ldots$ is the rational number 0.111111111111111...)

Also: Since the rational number 0 is the additive identity for ALL subsets of the Real Numbers under addition, $\left(\mathbb{Q}^{\prime},+\right)$ has no additive identity, since $0 \notin \mathbb{Q}^{\prime}$
5. The set of all positive irrational numbers with operation multiplication. $\left(\left(\mathbb{Q}^{\prime}\right)^{+}, \cdot\right)$ is NOT a group.

The operation \cdot is not closed on \mathbb{Q}^{\prime}. (To see this, observe that the product of irrational numbers $\sqrt{2}$ and $\sqrt{2}$ is the rational number 2)

Also: Since the rational number 1 is the multiplicative identity for ALL subsets of the Real Numbers under multiplication, , $\left(\left(\mathbb{Q}^{\prime}\right)^{+}, \cdot\right)$ has no additive identity, since $1 \notin \mathbb{Q}^{\prime}$.
6. The set \mathbb{Q}^{+}of all positive rational numbers with operation multiplication.
$\left(\mathbb{Q}^{+}, \cdot\right)$ IS a group.
The operation • is closed on \mathbb{Q}^{+}, since the product of two positive rational numbers is also a positive rational number.
$1 \in \mathbb{Q}^{+}$is the multiplicative identity.
Given $\frac{m}{n} \in \mathbb{Q}^{+}$, the element $\frac{n}{m} \in \mathbb{Q}^{+}$is the multiplicative inverse.
The operation • is associative (We know this because The operation • is associative for ALL real numbers.)
7. The set \mathbf{E} of all even integers with operation addition.
$(\mathbf{E},+)$ IS a group.
The operation + is closed on \mathbf{E}, since the sum of two even numbers is also an even number.
$0 \in \mathbf{E}$ is the additive identity
Given the even number $2 n \in \mathbf{E}$, the even number $-2 n \in \mathbf{E}$ is the additive inverse.
The operation + is associative (We know this because The operation + is associative for ALL real numbers.)
8. The set \mathbf{E} of all even integers with operation multiplication.

(E, \cdot) is NOT a group.

The operation • IS closed on \mathbf{E}, since the product of two even numbers is also an even number.

HOWEVER, the multiplicative identity $1 \notin \mathbf{E}$.
ALSO, given the element $2 n \in \mathbf{E}$, the multiplicative inverse, $\frac{1}{2 n} \notin \mathbf{E}$.
9. The set of all multiples of 5 with operation addition.

The set is denoted $5 \mathbb{Z}=\{0, \pm 5, \pm 10, \pm 15, \ldots\}$
$(5 \mathbb{Z},+)$ IS a group.

+ is closed on $5 \mathbb{Z}$. To see this, observe that given two elements $5 j$ and $5 k$ in $5 \mathbb{Z}$, their sum $5 j+5 k=5(j+k) \in 5 \mathbb{Z}$

The element $0=5 \cdot 0 \in 5 \mathbb{Z}$ is the additive identity.
Given $5 k \in 5 \mathbb{Z}$, the element $-5 k \in 5 \mathbb{Z}$ is the additive inverse.
The operation + is associative (We know this because The operation + is associative for ALL real numbers.)
10. The set of all multiples of 5 with operation multiplication.

$(5 \mathbb{Z}, \cdot)$ is NOT a group.

- is closed on $5 \mathbb{Z}$. To see this, observe that given two elements $5 j$ and $5 k$ in $5 \mathbb{Z}$, their product $(5 j)(5 k)=25 j k=5(5 j k) \in 5 \mathbb{Z}$

HOWEVER, the multiplicative identity $1 \notin 5 \mathbb{Z}$..
ALSO, given $n \in 5 \mathbb{Z}$, the multiplicative inverse $\frac{1}{n} \notin 5 \mathbb{Z}$.

In Exercises 11-12, the given table defines an operation of multiplication on the set $S=$ $\{e, a, b, c\}$.

In each case, find a group axiom that fails to hold, and thereby show that S is not a group.
11.

\cdot	e	a	b	c
e	e	a	b	c
a	a	b	a	b
b	b	c	b	c
c	c	e	c	e

Here are a few things:
Notice that the identity element e does not appear in the row headed by a. This means that a does not have a right inverse.

Notice that the identity element e does not appear in the row or column headed by b. This means that b has neither a right inverse nor a left inverse.

Notice that the identity e appears twice in the row headed by c - once in the column headed by a and once in the column headed by c. This means that both a and c are right inverses of c, violating the fact that an inverse is unique.
12.

\cdot	e	a	b	c
e	e	a	b	c
a	e	a	b	c
b	e	a	b	c
c	e	a	b	c

Here are a few things:
All entries in the column headed by e show that e is NOT a right identity. (i.e., $x e \neq x$ for any element except $x=e$.) So, there is NO two-sided identity.

The fact that $x y=y$ for all elements $x, y \in S$, tell us that each element $x \in S$ is a left identity, contradicting the fact that such an identity should be unique.

The facts that:
$x a \neq e, \forall x \in S$
$x b \neq e, \forall x \in S$
$x c \neq e, \forall x \in S$
tell us that none of the elements a, b, c have a left inverse.

In exercises, 13-18, let the binary operation be defined on \mathbb{Z} by the rule given. Determine in each case whether $(\mathbb{Z}, *)$ is a group. If it is a group, determine if it is an abelian group. If it is NOT a group, state which conditions, if any fail to hold.
13. $x * y=x+y+1$

This IS a group.

* is closed on \mathbb{Z}

Find the identity: We want $e \in \mathbb{Z}$ such that $x * e=x+e+1=x$
$\Rightarrow x+e+1=x \Rightarrow e+1=0 \Rightarrow e=-1$
Check: $x * e=x+e+1=x+(-1)+1=x$
Also: $e * x=e+x+1=(-1)+x+1=x$
i.e. For $e=-1$, we have: $e * x=x=x * e$ (i.e. $e=-1$ IS the identity)

Find the inverse: (i.e., For $x \in \mathbb{Z}$, find x^{-1})
We want x^{-1} such that $x * x^{-1}=x+x^{-1}+1=e=-1$
$\Rightarrow x+x^{-1}+1=-1 \Rightarrow x+x^{-1}=-2 \Rightarrow x^{-1}=-2-x$
Check: $x * x^{-1}=x+x^{-1}+1=x+(-2-x)+1=-1=e$
Also: $x^{-1} * x=x^{-1}+x+1=(-2-x)+x+1=-1=e$
i.e., $x * x^{-1}=e=x * x^{-1}$ (i.e., Given $x \in \mathbb{Z}, x^{-1}=-2-x$)

Regarding associativity:

$$
\begin{aligned}
(x * y) * z & =(x+y+1) * z=(x+y+1)+z+1=x+y+z+1+1=x+(y+z+1)+1 \\
& =x *(y+z+1)=x *(y * z)
\end{aligned}
$$

i.e., $(x * y) * z=x *(y * z)\left({ }^{*}\right.$ is associative $)$

Furthermore, $(\mathbb{Z}, *)$ IS an abelian group.
This will follow, if we can show that $x * y=y * x$
Observe: $x * y=(x+y+1)=(y+x+1)=y * x$
14. $x * y=x+y-1$

This IS a group.

* is closed on \mathbb{Z}
$e=1$ is the identity
Find the identity: We want $e \in \mathbb{Z}$ such that $x * e=x+e-1=x$
$\Rightarrow x+e-1=x \Rightarrow e-1=0 \Rightarrow e=1$
Check: $x * e=x+e-1=x+(1)-1=x$
Also: $e * x=e+x-1=(1)+x-1=x$
i.e. For $e=1$, we have: $e * x=x=x * e$ (i.e. $e=1$ IS the identity)

Find the inverse: (i.e., For $x \in \mathbb{Z}$, find x^{-1})
We want x^{-1} such that $x * x^{-1}=x+x^{-1}-1=e=1$
$\Rightarrow x+x^{-1}-1=1 \Rightarrow x+x^{-1}=2 \Rightarrow x^{-1}=2-x$
Check: $x * x^{-1}=x+x^{-1}-1=x+(2-x)-1=1=e$
Also: $x^{-1} * x=x^{-1}+x-1=(2-x)+x-1=1=e$
i.e., $x * x^{-1}=e=x * x^{-1}$ (i.e., Given $x \in \mathbb{Z}, x^{-1}=2-x$)

Regarding Associativity:

$$
\begin{aligned}
& \begin{array}{l}
(x * y) * z=(x+y-1) * z=(x+y-1)+z-1=x+y+z-1-1=x+(y+z-1)-1 \\
\quad=x *(y+z-1)=x *(y * z)
\end{array} \\
& \text { i.e., }(x * y) * z=x *(y * z)(* \text { is associative })
\end{aligned}
$$

Furthermore, $(\mathbb{Z}, *)$ IS an abelian group.
This will follow, if we can show that $x * y=y * x$
Observe: $x * y=(x+y-1)=(y+x-1)=y * x$
15. $x * y=x+x y$

This is NOT a group.

* is closed on \mathbb{Z}

Is there an identity? (i.e., is there an element e such that $e * x=x=x * e$?)
Observe: $x * e=x+x e=x, \Rightarrow x e=0$
$\Rightarrow x e=0 \Rightarrow e=0$
i.e., $x * 0=x$, so $e=0$ may be the identity.

Let's check to see if $0 * x=x$.
$0 * x=0+0 \cdot x=0$.
i.e., $x * 0=x$, but $0 * x=0$.

So $e=0$ is NOT a (two-sided) identity
i.e., There is no identity

Hence, given $x \in \mathbb{Z}$, there can be no x^{-1}.
Given $x \in \mathbb{Z}, x^{-1}$ Does Not Exist)

Regarding Associativity:

$(x * y) * z=(x+x y) * z=(x+x y)+(x+x y) z=x+x y+x z+x y z$
$x *(y * z)=x *(y+y z)=x+x(y+y z)=x+x y+x y z$
i.e., $(x * y) * z \neq x *(y * z)\left(^{*}\right.$ is NOT associative)
16. $x * y=x y+y$

This is NOT a group.

* is closed on \mathbb{Z}

Is there an identity? (i.e., is there an element e such that $e * x=x=x * e$?)
Observe: $x * e=x e+e=x \Rightarrow(x+1) e=x \Rightarrow e=\frac{x}{x+1}$
i.e., $e=\frac{x}{x+1}$

Note that e is NOT a constant value - it's value depends on the value of x. So there is no single element e such that $x * e=x$.

Therefore, there is no identity
Hence, given $x \in \mathbb{Z}$, there can be no x^{-1}.
Given $x \in \mathbb{Z}, x^{-1}$ Does Not Exist)

Regarding Associativity:

$(x * y) * z=(x y+y) * z=(x y+y) z+z=x y z+y z+z$
$x *(y * z)=x *(y z+z)=x(y z+z)+(y z+z)=x y z+x z+y z+z$
i.e., $(x * y) * z \neq x *(y * z)\left(^{*}\right.$ is NOT associative)
17. $x * y=x+x y+y$

This is NOT a group.

* is closed on \mathbb{Z}

Is there an identity? (i.e., is there an element e such that $e * x=x=x * e$?)
Observe: $x * e=x+x e+e=x \Rightarrow x e+e=0 \Rightarrow(x+1) e=0 \Rightarrow e=\frac{0}{x+1}$
i.e., $e=0$

Also:
$e * x=e+e x+x=x \Rightarrow e+e x=0 \Rightarrow e(1+x)=0 \Rightarrow e=\frac{0}{1+x}$
i.e., $e=0$

Next, $\forall x \in \mathbb{Z}$, does there exist an x^{-1} ?

Consider:

$x * x^{-1}=x+x x^{-1}+x^{-1}=0 \Rightarrow x x^{-1}+x^{-1}=-x \Rightarrow(x+1) x^{-1}=-x$
$\Rightarrow x^{-1}=\frac{-x}{x+1}$
Note that a consequence of this result is that x^{-1} is undefined for $x=-1$. (i.e., $x=-1$ has no inverse.)

x inverse does not exist for every element in \mathbb{Z}

Regarding Associativity:

$$
\begin{aligned}
& (x * y) * z=(x+x y+y) * z=(x+x y+y)+(x+x y+y) z+z=x+x y+y+x z+ \\
& x y z+y z+z \\
& \quad=x+y+z+x y+x z+y z+x y z \\
& x *(y * z)=x *(y+y z+z)=x+x(y+y z+z)+(y+y z+z)=x+x y+x y z+x z+ \\
& y+y z+z \\
& \quad=x+y+z+x y+x z+y z+x y z \\
& \text { i.e., }(x * y) * z=x *(y * z)(* \text { IS associative })
\end{aligned}
$$

18. $x * y=x-y$

This is NOT a group.

* is closed on \mathbb{Z}

Is there an identity? (i.e., is there an element e such that $e * x=x=x * e$?)
Observe: $x * e=x-e=x \Rightarrow-e=0 \Rightarrow e=0$
i.e., $e=0$

Also:
$e * x=e-x=x \Rightarrow e=2 x$
i.e., $e=2 x$

The left and right sided identities are not equal, so there is NO Identity.
Consequently, $\forall x \in \mathbb{Z}$, there does NOT exist an inverse.
Regarding Associativity:

$$
\begin{aligned}
& (x * y) * z=(x+x y+y) * z=(x+x y+y)+(x+x y+y) z+z=x z+x y z+y z+z \\
& x *(y * z)=x *(y+y z+z)=x+x(y+y z+z)+(y+y z+z)=x+x y+x y z+y+y z+z \\
& \text { i.e., }(x * y) * z \neq x *(y * z)(* \text { is NOT associative })
\end{aligned}
$$

In exercises, 19-21, Fill in the group table for $(G, *)$ in as many different ways as possible.

19. | $*$ | e | a |
| :--- | :--- | :--- |
| e | | |
| a | | |

$*$	e	a
e	e	a
a	a	e

This is the only possibility.
20.

$*$	e	a	b
e			
a			
b			

$*$	e	a	b
e	e	a	b
a	a	b	e
b	b	e	a

This is the only possibility.
21.

$*$	e	a	b	c
e				
a				
b				
c				

*	e	a	b	c	*	e	a	b	c	*	e	a	b	c	*	e	a	b	c
e	e	a	b	c	e	e	a	b	c	e	e	a	b	c	e	e	a	b	c
a	a	b	c	e	a	a	c	e	b	a	a	c	e	b	a	a	e	c	b
b	b	c	e	a	b	b	e	a	c	b	b	e	c	a	b	b	c	a	e
c	c	e	a	b	c	c	b	c	e	c	c	b	a	e	c	c	b	e	a

$*$	e	a	b	c
e	e	a	b	c
a	a	e	c	b
b	b	c	e	a
c	c	b	a	e

are all possibilities.

