# MTH 1125 Test \#1 - (2 pm class - Pod A) - Solutions FALL 2020 

## Pat Rossi

Name $\qquad$
Instructions. Show CLEARLY how you arrive at your answers.

1. Compute: $\lim _{x \rightarrow 3} \frac{x^{2}+x+8}{x^{2}+3 x-8}=$

Step \#1 Try Plugging In:

$$
\lim _{x \rightarrow 3} \frac{x^{2}+x+8}{x^{2}+3 x-8}=\frac{(3)^{2}+(3)+8}{(3)^{2}+3(3)-8}=\frac{20}{10}=2
$$

$$
\text { i.e., } \lim _{x \rightarrow 3} \frac{x^{2}+x+8}{x^{2}+3 x-8}=2
$$

2. Compute: $\lim _{x \rightarrow 4} \frac{x^{2}-9 x+20}{x^{2}-5 x+4}=$

$$
\lim _{x \rightarrow 4} \frac{x^{2}-9 x+20}{x^{2}-5 x+4}=\frac{(4)^{2}-9(4)+20}{(4)^{2}-5(4)+4}=\frac{0}{0} \quad \begin{array}{ll}
\text { No Good - } \\
\text { Zero Divide! }
\end{array}
$$

Step \#2 Try Factoring and Cancelling:

$$
\begin{aligned}
& \lim _{x \rightarrow 4} \frac{x^{2}-9 x+20}{x^{2}-5 x+4}=\lim _{x \rightarrow 4} \frac{(x-4)(x-5)}{(x-4)(x-1)}=\lim _{x \rightarrow 4} \frac{(x-5)}{(x-1)}=\frac{(4)-5}{(4)-1}=\frac{-1}{3}=-\frac{1}{3} \\
& \text { i.e., } \lim _{x \rightarrow 4} \frac{x^{2}-9 x+20}{x^{2}-5 x+4}=-\frac{1}{3}
\end{aligned}
$$

3. Compute: $\lim _{x \rightarrow 4} \frac{x^{2}-4 x-9}{x^{2}-2 x-8}=$

Step \#1 Try Plugging in:

$$
\lim _{x \rightarrow 4} \frac{x^{2}-4 x-9}{x^{2}-2 x-8}=\frac{(4)^{2}-4(4)-9}{(4)^{2}-2(4)-8}=\frac{-9}{0} \quad \begin{aligned}
& \text { No Good - } \\
& \text { Zero Divide! }
\end{aligned}
$$

Step \#2 Try Factoring and Cancelling:
No Good! "Factoring and Cancelling" only works when Step \#1 yields $\frac{0}{0}$.
Step \#3 Analyze the one-sided limits:

$$
\begin{aligned}
& \lim _{x \rightarrow 4^{-}} \frac{x^{2}-4 x-9}{x^{2}-2 x-8}=\lim _{x \rightarrow 4^{-}} \frac{x^{2}-4 x-9}{(x+2)(x-4)}=\frac{-9}{(6)(-\varepsilon)}=\frac{\left(-\frac{3}{2}\right)}{(-\varepsilon)}=+\infty \\
& x \rightarrow 4^{-} \\
& \Rightarrow \quad x<4 \\
& \Rightarrow \quad x-4<0 \\
& \lim _{x \rightarrow 4^{+}} \frac{x^{2}-4 x-9}{x^{2}-2 x-8}=\lim _{x \rightarrow 4^{+}} \frac{x^{2}-4 x-9}{(x+2)(x-4)}=\frac{-9}{(6)(+\varepsilon)}=\frac{\left(-\frac{3}{2}\right)}{(+\varepsilon)}=-\infty \\
& x \rightarrow 4^{+} \\
& \Rightarrow \quad x>4 \\
& \Rightarrow \quad x-4>0
\end{aligned}
$$

Since the one-sided limits are not equal, $\lim _{x \rightarrow 4} \frac{x^{2}-4 x-9}{x^{2}-2 x-8}$ Does Not Exist!
4. Compute: $\lim _{x \rightarrow-\infty} \frac{3 x^{4}+4 x^{2}-2}{2 x^{3}+7 x^{2}-x}=$

$$
\lim _{x \rightarrow-\infty} \frac{3 x^{4}+4 x^{2}-2}{2 x^{3}+7 x^{2}-x}=\lim _{x \rightarrow-\infty} \frac{3 x^{4}}{2 x^{3}}=\lim _{x \rightarrow-\infty} \frac{3}{2} x=-\infty
$$

$$
\text { i.e., } \lim _{x \rightarrow-\infty} \frac{3 x^{4}+4 x^{2}-2}{2 x^{3}+7 x^{2}-x}=-\infty
$$

5. $f(x)=\frac{x^{2}+5 x}{x^{2}+x-6}$ Find the asymptotes and graph

## Verticals

1. Find $x$-values that cause division by zero.
$\Rightarrow x^{2}+x-6=0$
$\Rightarrow(x+3)(x-2)=0$
$\Rightarrow x=-3$ and $x=2$ are possible vertical asymptotes.
2. Compute the one-sided limits.
$\lim _{x \rightarrow-3^{-}} \frac{x^{2}+5 x}{x^{2}+x-6}=\lim _{x \rightarrow-3^{-}} \frac{x^{2}+5 x}{(x+3)(x-2)}=\frac{-6}{(-\varepsilon)(-5)}=\frac{-6}{(\varepsilon)(5)}=\frac{\left(-\frac{6}{5}\right)}{\varepsilon}=-\infty$

$$
\begin{aligned}
& x \rightarrow-3^{-} \\
\Rightarrow & x<-3 \\
\Rightarrow & x+3<0
\end{aligned}
$$

$\lim _{x \rightarrow-3^{+}} \frac{x^{2}+5 x}{x^{2}+x-6}=\lim _{x \rightarrow-3^{+}} \frac{x^{2}+5 x}{(x+3)(x-2)}=\frac{-6}{(+\varepsilon)(-5)}=\frac{\left(\frac{-6}{-5}\right)}{\varepsilon}=\frac{\left(\frac{6}{5}\right)}{\varepsilon}=+\infty$

$$
\begin{array}{|ll|} 
& x \rightarrow-3^{+} \\
\Rightarrow & x>-3 \\
\Rightarrow & x+3>0
\end{array}
$$

Since the one-sided limits are infinite, $x=-3$ is a vertical asymptote.
$\lim _{x \rightarrow 2^{-}} \frac{x^{2}+5 x}{x^{2}+x-6}=\lim _{x \rightarrow 2^{-}} \frac{x^{2}+5 x}{(x+3)(x-2)}=\frac{14}{(5)(-\varepsilon)}=\frac{\left(\frac{14}{5}\right)}{(-\varepsilon)}=-\infty$

$$
\begin{array}{|ll|} 
& x \rightarrow 2^{-} \\
\Rightarrow & x<2 \\
\Rightarrow & x-2<0
\end{array}
$$

$\lim _{x \rightarrow 2^{+}} \frac{x^{2}+5 x}{x^{2}+x-6}=\lim _{x \rightarrow 2^{+}} \frac{x^{2}+5 x}{(x+3)(x-2)}=\frac{14}{(5)(+\varepsilon)}=\frac{\left(\frac{14}{5}\right)}{(\varepsilon)}=+\infty$

$$
\begin{array}{|ll|} 
& x \rightarrow 2^{+} \\
\Rightarrow & x>2 \\
\Rightarrow & x-2>0
\end{array}
$$

Since the one-sided limits are infinite, $x=2$ is a vertical asymptote.

## Horizontals

Compute the limits as $x \rightarrow-\infty$ and as $x \rightarrow+\infty$
$\lim _{x \rightarrow-\infty} \frac{x^{2}+5 x}{x^{2}+x-6}=\lim _{x \rightarrow-\infty} \frac{x^{2}}{x^{2}}=\lim _{x \rightarrow-\infty} 1=1$
$\lim _{x \rightarrow+\infty} \frac{x^{2}+5 x}{x^{2}+x-6}=\lim _{x \rightarrow+\infty} \frac{x^{2}}{x^{2}}=\lim _{x \rightarrow+\infty} 1=1$
Since the limits are finite and constant, $y=1$ is a horizontal asymptote.
Summary:

$$
\begin{array}{|ll|}
\hline \lim _{x \rightarrow-3^{-}} \frac{x^{2}+5 x}{x^{2}+x-6}=-\infty & \\
\lim _{x \rightarrow-3^{+}} \frac{x^{2}+5 x}{x^{2}+x-6}=+\infty & \lim _{x \rightarrow-\infty} \frac{x^{2}+5 x}{x^{2}+x-6}=1 \\
\lim _{x \rightarrow 2^{-}} \frac{x^{2}+5 x}{x^{2}+x-6}=-\infty & \lim _{x \rightarrow+\infty} \frac{x^{2}+5 x}{x^{2}+x-6}=1 \\
\lim _{x \rightarrow 2^{+}} \frac{x^{2}+5 x}{x^{2}+x-6}=+\infty &
\end{array}
$$

Graph $f(x)=\frac{x^{2}+5 x}{x^{2}+x-6}$

6. Compute: $\lim _{x \rightarrow 6} \frac{\sqrt{x-2}-2}{x-6}=$

Step \#1 Try Plugging in:

$$
\lim _{x \rightarrow 6} \frac{\sqrt{x-2}-2}{x-6}=\frac{\sqrt{(6)-2}-2}{(6)-6}=\frac{0}{0} \quad \begin{aligned}
& \text { No Good - } \\
& \text { Zero Divide! }
\end{aligned}
$$

Step \#2 Try Factoring and Cancelling:

$$
\begin{aligned}
& \lim _{x \rightarrow 6} \frac{\sqrt{x-2}-2}{x-6}=\lim _{x \rightarrow 6} \frac{\sqrt{x-2}-2}{x-6} \cdot \frac{\sqrt{x-2}+2}{\sqrt{x-2}+2}=\lim _{x \rightarrow 6} \frac{(\sqrt{x-2})^{2}-(2)^{2}}{(x-6)[\sqrt{x-2}+2]} \\
& =\lim _{x \rightarrow 6} \frac{(x-2)-4}{(x-6)[\sqrt{x-2}+2]}=\lim _{x \rightarrow 6} \frac{(x-6)}{(x-6)[\sqrt{x-2}+2]}=\lim _{x \rightarrow 6} \frac{1}{[\sqrt{x-2}+2]} \\
& =\frac{1}{[\sqrt{(6)-2}+2]}=\frac{1}{[2+2]}=\frac{1}{4}
\end{aligned}
$$

$$
\text { i.e., } \lim _{x \rightarrow 6} \frac{\sqrt{x-2}-2}{x-6}=\frac{1}{4}
$$

7. 

| $x=$ | $f(x)=$ |
| ---: | ---: |
|  |  |
| -2.5 | -3.6 |
| -2.1 | -30.8 |
| -2.01 | -318.9 |
| -2.001 | $-3,241.9$ |
| -2.0001 | $-35,342.2$ |$\quad$| $x=$ | $f(x)=$ |
| ---: | ---: | ---: |
| -1.5 | 3.6 |
| -1.9 | 30.8 |
| -1.999 | 318.9 |
| -1.999 | $35,341.9$ |

Based on the information in the table above, do the following:
(a) $\lim _{x \rightarrow-2^{-}} f(x)=-\infty$
(b) $\lim _{x \rightarrow-2^{+}} f(x)=+\infty$
(c) Graph $f(x)$

8. Determine whether or not $f(x)$ is continuous at the point $x=3$. (Justify your answer)
$f(x)=\left\{\begin{array}{cc}3 x+1 & \text { for } x<3 \\ 10 & \text { for } x=3 \\ x^{2}+1 & \text { for } x>3\end{array}\right.$
First of all, let's recognize that $f(x)$ will be continuous at the point $x=3$ exactly when $\lim _{x \rightarrow 3} f(x)=f(3)$.

So we should compute: $\lim _{x \rightarrow 3} f(x)$
The problem is that $f(x)$ is defined differently for $x<3$ than it is for $x>3$.
So we must compute the one sided limits as $x \rightarrow 3$
Observe: As $x \rightarrow 3^{-}, x<3$.
Therefore: $\lim _{x \rightarrow 3^{-}} f(x)=\lim _{x \rightarrow 3^{-}}(3 x+1)=3(3)+1=10$
Also: As $x \rightarrow 3^{+}, x>3$.
Therefore: $\lim _{x \rightarrow 3^{+}} f(x)=\lim _{x \rightarrow 3^{+}}\left(x^{2}+1\right)=(3)^{2}+1=10$
Since the one-sided limits are equal, $\lim _{x \rightarrow 3} f(x)$ exists, and is equal to the common value of the one-sided limits.
i.e., $\lim _{x \rightarrow 3} f(x)=10$
$\Rightarrow \lim _{x \rightarrow 3} f(x)=f(3)$
Hence, $f(x)$ is continuous at the point $x=3$

