MTH 1126 - Test #4 - Solutions
SPRING 2024 - 11AM CLASS

Pat Rossi Name

Show CLEARLY how you arrive at your answers.

In Exercises 1-2, Determine convergence/divergence. If the integral converges, find its value.
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(Because ( 15) 1 is discontinuous at x = 5, this is an improper integral.)
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3. Determine convergence/divergence of the sequence whose n'" term is given by:
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(i.e., Determine convergence/divergence of the sequence:
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Observe: lim, .o a, = lim,_,., 2% +2 = lim,, o 37 =lim,, o3 =3

Since lim,, ., a, is a finite real number, the sequence converges to that limit.
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4. Determine convergence/divergence of the given series. (Justify your answer!) If the

series converges, determine its sum.
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“If the series converges, determine its sum.” In general, there are only two
types of convergent series whose sums we can compute: Geometric and “Telescoping
(Collapsing) Sum.”

The series Z % is definitely NOT Geometric.
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Maybe it can be written as a “Telescoping (Collapsing) Sum.”

So let’s see if we can express a,, = # as the difference of two terms.
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Consequently:
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ie., ﬁ converges and is equal to %

In Exercises 5-6, determine convergence/divergence of the given series. (Justify your an-
swers!) If the series converges, determine its sum.
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“If the series converges, determine its sum.” In general, there are only two types
of convergent series whose sums we can compute: Geometric and “Telescoping Sum.”

Notice that each term after the first term is equal to % times its predecessor.

The series is geometric with ratio r = %
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Since |r| < 1, the series converges to 21 = L = ﬁ =3
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The series converges to 3
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First, note that lim, . a, = lim, .o 5~ = lim, o 5~ = lim,, . % =
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Since lim,, ., a, # 0, the series diverges.

o
ie., Z 2tl diverges by the “n™ term Test.”
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In Exercises 7-9, determine convergence/divergence of the given series. (Justify your an-
swers!)
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There are a few different ways that we can try to do this.
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We can compare Z ﬁ to Z T%, which is a convergent p-series with p =3 > 1.
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Since 9 1 < 3 and Z n% converges, Z %3%1 converges by the Direct
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Comparison Test.

(i.e. the fact that the “larger series” converges implies that the “smaller series” con-
verges also.)
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ie., E ﬁ converges by the Direct Comparison with E %
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Alternatively, we can use the Limit Comarison Test.
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Observe: lim,,_ = lim,,_,
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Since 0 < lim,,_, ‘Z—:‘ < 00, Both series “do the same thing.”

Since Z nig, is a convergent p-series (with p = 3), Z 2713%1 converges also, by the
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Limit Comparison Test.
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ie., Z ﬁ converges by the Limit Comparison Test with Z %
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There may be a few ways to do this.
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First, we can compare g n+r3 with g %, which is the divergent Harmonic Series.
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Since 5 < — and Z ~ diverges, we can conclude nothing from the Direct
@;_/ N n=1
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Comparison Test.
i.e., since the “larger series” diverges, this tells us nothing about the “smaller series.”
g g g

Alternatively: Applying the Limit Comparison Test, we have:
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lim,, oo Z—: = lim,, oo = lim,, oo =1
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Since 0 < lim,,_, Z—n < 00, Both series “do the same thing.”
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Since Z %, is the divergent Harmonic Series, Z n+r3 diverges also, by the Limit
n=1 n=0

Comparison Test.
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Alternatively: [~ n+r3dn = limy_o0 fob

= limy_oo In(b+3) —In (0 + 3)] = o0

Z n_}rs diverges by the Integral Test
n=0
Alternatively: Z n+r3 = % + }1 + % + % + ... is the Harmonic Series with the first two

n=0
terms deleted. Since the Harmonic Series diverges, this series diverges also, because
adding or deleting finitely many terms from a series does not change whether the series
converges or diverges.



Z n+r3 diverges by Limit Comparison with Z%
n=0 p—
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Or Z #3 diverges by the Integral Test.
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Or, Z n+r3 diverges because it is the Harmonic Series with finitely many terms deleted.
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9. Determine convergence/divergence of the given series. (Justify your answer!)
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Observe: 'lim, . @, = lim,_ 3n171 =0
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Finally: the series is alternating.

By the Alternating Series Test, the series Z (—1)" %+1 converges
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10. Determine convergence/divergence of the given series. (Justify your answer!)
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The n'™ term, a, is something raised to the n'

candidate for the n'" Root Test.

power, so this series is a good

Observe: lim,, .o, ¥/|a,| = lim, . { (%)n = lim, oo (%) = lim,,_, o (6”)
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ie, lim, o {/|a,| =6

Since lim,,_,, ¢/|an| > 1, the series diverges. by the n'® Root Test.
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(6:;2)” diverges by the n'* Root Test.
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11. Determine convergence/divergence of the given series. (Justify your answer!)

oS
n!
5

n=1

The n'™® term a,, contains a factorial, so this is a good candidate for the Ratio Test.
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> 1, the series diverges.

Z 5% diverges by the Ratio Test.
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