MTH 1126-Test \#1

Spring 2006
Pat Rossi
Name \qquad

Instructions. Show CLEARLY how you arrive at your answers.

1. Compute: $\int_{0}^{1}\left(x^{3}+1\right)^{4} x^{2} d x=$
2. Use the " $f-g$ " method to compute the area bounded by the graphs of $f(x)=x^{3}$ and $g(x)=x$
3. Suppose that $\int_{2}^{8}(f(x)-g(x)) d x=9 ; \int_{2}^{8} g(x) d x=5$; and that $\int_{4}^{2} f(x) d x=4$. Compute $\int_{4}^{8} f(x) d x$.
4. Compute: $\int \tan \left(x^{2}\right) \sec ^{2}\left(x^{2}\right) x d x=$
5. Find the area bounded by the graphs of $f(x)=1-x^{2}$ and $g(x)=-x-1$. (Partition the proper interval, build the Riemann Sum, derive the appropriate integral.)
6. A region in the $x-y$ plane is bounded by the graphs $y=x^{2}$ and $y=\sqrt{x}$. Use the Disk Method to compute the volume of the solid of revolution generated by revolving the region about the x-axis. (Partition the proper interval, build the Riemann Sum, derive the appropriate integral.)
7. The graph of $f(x)$ is shown below. Compute $\int_{-3}^{3} f(x) d x$.

