MTH 4436 Homework Set 4.4; p. 82
 $\# 1,3,4,8,9,10,17,19,20$
 \section*{FALL 2016}

Pat Rossi
Name \qquad

1. Solve the following Linear Congruences:
(a) $25 x \equiv 15(\bmod 29)$

This is of the form $a x \equiv b(\bmod n)$, which has a solution exactly when $d \mid b$, where $d=\operatorname{gcd}(a, n)$. Furthermore, if $d \mid b$, then there a d mutually incongruent solutions $\bmod n$.
$d=\operatorname{gcd}(25,29)=1$ which divides 15 .
Hence, there exists $d=\operatorname{gcd}(25,29)=1$ solution.
Our next step is to find a particular solution.

1. 2. Divide the entire congruence through by $\operatorname{gcd}(25,29)=1$. Done!
1. Multiply both sides of the congruence by a number that will make the left hand side congruent to $1 \cdot x(\bmod 29)$.
Observe: $7 \cdot 25 x \equiv 7 \cdot 15(\bmod 29) \Rightarrow 175 x \equiv 105(\bmod 29) \Rightarrow 1 x \equiv$ $18(\bmod 29)$.
i.e., $x=18$ is our particular solution.

Since there is only one solution, we need not look for others.
$x=18$.
(b) $5 x \equiv 2(\bmod 26)$
$d=\operatorname{gcd}(a, b)=\operatorname{gcd}(5,26)=1$ which divides b (i.e., divides 2), hence, there exists a solution.
Our next step is to find a particular solution.

1. 2. Divide the entire congruence through by $\operatorname{gcd}(5,26)=1$.

Done!
2. Multiply both sides of the congruence by a number that will make the left hand side congruent to $1 \cdot x(\bmod 26)$.
Observe: $5 \cdot 5 x \equiv 5 \cdot 2(\bmod 26) \Rightarrow 25 x \equiv 10(\bmod 26) \Rightarrow-1 x \equiv$ $10(\bmod 26)$.
Multiplying both sides by (-1), we have:
$1 x \equiv-10(\bmod 26) \Rightarrow 1 x \equiv 16(\bmod 26)$.
i.e., $x=16$ is our particular solution.

Since there is only one solution, we need not look for others.
$x=16$.
(c) $6 x \equiv 15(\bmod 21)$
$\operatorname{gcd}(6,21)=3$ which divides 15 , hence, there exist $\operatorname{gcd}(6,21)=3$ solutions.
Our next step is to find a particular solution.

1. 2. Divide the entire congruence through by $\operatorname{gcd}(6,21)=3$.
$\Rightarrow 2 x \equiv 5(\bmod 7)$
Note: Since $\operatorname{gcd}(2,7)=1$, there is exactly one solution to this new congruence. It will be a particular solution to the original congruence.
1. Multiply both sides of the new congruence by a number that will make the left hand side congruent to $1 \cdot x(\bmod 7)$.
Observe: $4 \cdot 2 x \equiv 4 \cdot 5(\bmod 7) \Rightarrow 8 x \equiv 20(\bmod 7) \Rightarrow 1 x \equiv 6(\bmod 7)$.
i.e., $x=6$ is our particular solution.

Recall that given a particular solution of x_{0}, and $\operatorname{gcd}(a, n)=d$, the other solutions are of the form: $x=x_{0}+\left(\frac{n}{d}\right) t(\bmod 21)$ for $t=0,1,2, \ldots, d-1$. $x=6+\left(\frac{21}{3}\right)(0)=6$
$x=6+\left(\frac{21}{3}\right)(1)=13$
$x=6+\left(\frac{21}{3}\right)(2)=20$
The solutions are $6,13,20$.
(d) $36 x \equiv 8(\bmod 102)$
$\operatorname{gcd}(36,102)=6$ which DOES NOT divide 8 , hence, there exist NO solutions.
(e) $34 x \equiv 60(\bmod 98)$
$\operatorname{gcd}(34,98)=2$ which divides 60 , hence, there exist $\operatorname{gcd}(34,98)=2$ solutions.
Our next step is to find a particular solution.

1. 2. Divide the entire congruence through by $\operatorname{gcd}(34,98)=2$.
$\Rightarrow 17 x \equiv 30(\bmod 49)$
Note: Since $\operatorname{gcd}(17,49)=1$, there is exactly one solution to this new congruence. It will be a particular solution to the original congruence.
1. Multiply both sides of the new congruence by a number that will make the left hand side congruent to $1 \cdot x(\bmod 49)$.
Observe: $3 \cdot 17 x \equiv 3 \cdot 30(\bmod 49) \Rightarrow 51 x \equiv 90(\bmod 49)$
$\Rightarrow 2 x \equiv 41(\bmod 49) \Rightarrow 2 x \equiv(-8)(\bmod 49) \Rightarrow 24 \cdot 2 x \equiv 24 \cdot(-8)(\bmod 49)$
$\Rightarrow 48 x \equiv-192(\bmod 49) \Rightarrow(-1) x \equiv 4(\bmod 49) \Rightarrow 1 x \equiv-4(\bmod 49)$
$\Rightarrow 1 x \equiv 45(\bmod 49)$.
i.e., $x=45$ is a particular solution.

Recall that given a particular solution of x_{0}, and $\operatorname{gcd}(a, n)=d$, the other
solutions are of the form: $x=x_{0}+\left(\frac{n}{d}\right) t$ for $t=0,1,2, \ldots, d-1$.
$x=45+\left(\frac{98}{2}\right)(0)=45$
$x=45+\left(\frac{98}{2}\right)(1)=94$
The solutions are 45, 94 .
(f) $140 x \equiv 133(\bmod 301)($ hint: $\operatorname{gcd}(140,301)=7)$
$\operatorname{gcd}(140,301)=7$ which divides 133 , hence, there exist $\operatorname{gcd}(140,301)=7$ solutions.
To make things easier for ourselves, we will apply Thm 4.3, which says: If $c a \equiv$ $c b(\bmod n)$, then $a \equiv b\left(\bmod \frac{n}{d}\right)$, where $d=\operatorname{gcd}(c, n)$.

In order to apply Thm 4.3, we'll have to re-write the congruence such that $\operatorname{gcd}(140,301)$ appears explicitly as a factor on each side.

Thus, our congruence becomes:
(7) $(20) x \equiv(7)(19)\left(\bmod \frac{301}{7}\right)$
i.e., $(7)(20) x \equiv(7)(19)(\bmod 43)$

Applying Thm 4.3, we have:
$20 x \equiv 19(\bmod 43)$
At this point, a particular solution is not obvious (at least not to me!). So we'll do some more manipulation.
$20 x \equiv 19(\bmod 43) \Rightarrow 20 x \equiv-24(\bmod 43) \Rightarrow(4)(5) x \equiv(4)(-6)(\bmod 43)$ Since 43 is prime and $43 \nmid 4$, we can cancel 4 on each side. $\Rightarrow 5 x \equiv-6(\bmod 43) \Rightarrow$ $5 x \equiv 37(\bmod 43) \Rightarrow 5 x \equiv 80(\bmod 43) \Rightarrow x=16$
i.e., $x=16$ is our particular solution of the linear congruence $20 x \equiv 19(\bmod 43)$.
$x=16$ is also a particular solution of the original linear congruence $140 x \equiv$ $133(\bmod 301)$

All other solutions are of the form: $x=x_{0}+\frac{t n}{d} ; \quad t=0,1, \ldots, d-1$
All other solutions are of the form: $x=16+\frac{301 t}{7} ; \quad t=0,1, \ldots, 6$
i.e., $x=16+43 t ; \quad t=0,1, \ldots, 6$

Our solutions are: $x=16,59,102,145,188,231,274$
3. Find all solutions of the linear congruence $3 x-7 y \equiv 11(\bmod 13)$

We can rewrite this congruence as $3 x \equiv(11+7 y)(\bmod 13)$
Since $\operatorname{gcd}(3,13)=1$, there is a unique solution - for each value of $7 y \bmod 13$
(i.e., there is a unique solution for $y=0,1,2,3, \ldots, 12$)

For $y=0$, we have: $3 x \equiv 11(\bmod 13) \Rightarrow 3 x \equiv 24(\bmod 13) \Rightarrow x=8$ i.e., $x_{0}=8 ; y_{0}=0$ is a particular solution.

How do we get all other solutions?
Recall that we have a unique solution for $y=0,1,2,3, \ldots, 12$.
Observe that if $y_{1}=y_{0}+1$, then we have:

$$
\begin{aligned}
& 3 x_{1} \equiv\left(11+7 y_{1}\right)(\bmod 13) \Rightarrow 3 x_{1} \equiv\left(11+7\left(y_{0}+1\right)\right)(\bmod 13) \\
& \Rightarrow 3 x_{1} \equiv\left(11+7 y_{0}+7\right)(\bmod 13) \Rightarrow 3 x_{1}-7 \equiv\left(11+7 y_{0}\right)(\bmod 13) \\
& \Rightarrow 3 x_{1}+6 \equiv\left(11+7 y_{0}\right)(\bmod 13) \Rightarrow 3 \underbrace{\left(x_{1}+2\right)}_{x_{0}} \equiv\left(11+7 y_{0}\right)(\bmod 13) \\
& \Rightarrow x_{0}=x_{1}+2 \Rightarrow x_{1}=x_{0}-2 \\
& \text { i.e., } y_{1}=y_{0}+1 \Rightarrow x_{1}=x_{0}-2
\end{aligned}
$$

Inductively: $y_{i+1}=y_{i}+1 \Rightarrow x_{i+1}=x_{i}-2$
Consequently, given the particular solution $x_{0}=8 ; y_{0}=0$, all other solutions are of the form:

$$
x_{i}=x_{0}-2 i ; \quad y_{i}=y_{0}+i ; \quad \text { for } i=0,1,2,3, \ldots, 12
$$

i.e., all other solutions are of the form: $x_{i}=8-2 i ; \quad y_{i}=i$ for $i=0,1,2,3, \ldots, 12$
4. Solve each of the following sets of simultaneous congruences:
(a) $x \equiv 1(\bmod 3) ; x \equiv 2(\bmod 5) ; x \equiv 3(\bmod 7)$

Since $3,5,7$ are pair-wise relatively prime, the system of congruences has a unique solution $\bmod (3 \cdot 5 \cdot 7)$. (i.e., our solution is unique $\bmod (105)$.
To get the solution:

1. Define $n=n_{1} n_{2} \ldots n_{r}$
i.e., $n=3 \cdot 5 \cdot 7=105$

Define $N_{k}=\frac{n}{n_{k}}$ for $k=1,2, \ldots, r$.
$N_{1}=\frac{105}{3}=35$
$N_{2}=\frac{105}{5}=21$
$N_{3}=\frac{105}{7}=15$
2. Solve the related congruences:

$$
\begin{array}{ccc}
N_{1} x_{1} & \equiv 1\left(\bmod n_{1}\right) \\
N_{2} x_{2} & \equiv & 1\left(\bmod n_{2}\right) \\
N_{3} x_{3} & \equiv & 1\left(\bmod n_{3}\right) \\
\vdots & \vdots & \vdots \\
N_{r} x_{r} & \equiv & 1\left(\bmod n_{r}\right)
\end{array}
$$

i.e., solve the congruences:

$$
\begin{aligned}
35 x_{1} & \equiv 1(\bmod 3) \\
21 x_{2} & \equiv 1(\bmod 5) \\
15 x_{3} & \equiv 1(\bmod 7)
\end{aligned}
$$

This yields: $x_{1}=2 ; x_{2}=1 ; x_{3}=1$
3. Our solution is the number $x \equiv\left(a_{1} N_{1} x_{1}+a_{2} N_{2} x_{2}+\ldots+a_{r} N_{r} x_{r}\right)(\bmod (n))$.

Our solution is the number $x \equiv(1 \cdot 35 \cdot 2+2 \cdot 21 \cdot 1+3 \cdot 15 \cdot 1)(\bmod (105))$
$\equiv 157(\bmod (105)) \equiv 52(\bmod (105))$.
i.e., $x=52$

Check: $52 \equiv 1(\bmod 3)$ Check!
$52 \equiv 2(\bmod 5)$ Check!
$52 \equiv 3(\bmod 7)$ Check!
(b) $x \equiv 5(\bmod 11) ; x \equiv 14(\bmod 29) ; x \equiv 15(\bmod 31)$

Since $11,29,31$ are pair-wise relatively prime, the system of congruences has a unique solution $\bmod (11 \cdot 29 \cdot 31)$. (i.e., our solution is unique $\bmod (9889)$.
To get the solution:

1. Define $n=n_{1} n_{2} \ldots n_{r}$
i.e., $n=11 \cdot 29 \cdot 31=9889$

Define $N_{k}=\frac{n}{n_{k}}$ for $k=1,2, \ldots, r$.
$N_{1}=\frac{9889}{11}=899$
$N_{2}=\frac{9889}{29}=341$
$N_{3}=\frac{9889}{31}=319$
2. Solve the related congruences:

$$
\begin{array}{ccc}
N_{1} x_{1} & \equiv & 1\left(\bmod n_{1}\right) \\
N_{2} x_{2} & \equiv 1\left(\bmod n_{2}\right) \\
N_{3} x_{3} & \equiv & 1\left(\bmod n_{3}\right) \\
\vdots & \vdots & \vdots \\
N_{r} x_{r} & \equiv & 1\left(\bmod n_{r}\right)
\end{array}
$$

i.e., solve the congruences:

$$
\begin{aligned}
& 899 x_{1} \equiv 1(\bmod 11) \\
& 341 x_{2} \equiv 1(\bmod 29) \\
& 319 x_{3} \equiv 1(\bmod 31)
\end{aligned}
$$

This yields: $x_{1}=7 ; x_{2}=4 ; x_{3}=7$
3. Our solution is the number $x \equiv\left(a_{1} N_{1} x_{1}+a_{2} N_{2} x_{2}+\ldots+a_{r} N_{r} x_{r}\right)(\bmod (n))$.

Our solution is the number:
$x \equiv(5 \cdot 899 \cdot 7+14 \cdot 341 \cdot 4+15 \cdot 319 \cdot 7)(\bmod (9889)) \equiv$
$84,056(\bmod (9889)) \equiv 4944(\bmod (9889))$.
i.e., $x=4944$

Check: $4944 \equiv 5(\bmod 11) \quad$ Check!
$4944 \equiv 14(\bmod 29)$ Check!
$4944 \equiv 15(\bmod 31)$ Check!
(c) $x \equiv 5(\bmod 6) ; x \equiv 4(\bmod 11) ; x \equiv 3(\bmod 17)$

Since $6,11,17$ are pair-wise relatively prime, the system of congruences has a unique solution $\bmod (6 \cdot 11 \cdot 17)$. (i.e., our solution is unique $\bmod (1122)$.
To get the solution:

1. Define $n=n_{1} n_{2} \ldots n_{r}$
i.e., $n=6 \cdot 11 \cdot 17=1122$

Define $N_{k}=\frac{n}{n_{k}}$ for $k=1,2, \ldots, r$.
$N_{1}=\frac{1122}{6}=187$
$N_{2}=\frac{1122}{11}=102$
$N_{3}=\frac{1122}{17}=66$
2. Solve the related congruences:

$$
\begin{array}{ccc}
N_{1} x_{1} & \equiv & 1\left(\bmod n_{1}\right) \\
N_{2} x_{2} & \equiv 1\left(\bmod n_{2}\right) \\
N_{3} x_{3} & \equiv & 1\left(\bmod n_{3}\right) \\
\vdots & \vdots & \vdots \\
N_{r} x_{r} & \equiv & 1\left(\bmod n_{r}\right)
\end{array}
$$

i.e., solve the congruences:

$$
\begin{aligned}
187 x_{1} & \equiv 1(\bmod 6) \\
102 x_{2} & \equiv 1(\bmod 11) \\
66 x_{3} & \equiv 1(\bmod 17)
\end{aligned}
$$

This yields: $x_{1}=1 ; x_{2}=4 ; x_{3}=8$
3. Our solution is the number $x \equiv\left(a_{1} N_{1} x_{1}+a_{2} N_{2} x_{2}+\ldots+a_{r} N_{r} x_{r}\right)(\bmod (n))$.

Our solution is the number $x \equiv(5 \cdot 187 \cdot 1+4 \cdot 102 \cdot 4+3 \cdot 66 \cdot 8)(\bmod (1122)) \equiv$
$4151(\bmod (1122)) \equiv 785(\bmod (1122))$.
i.e., $x=785$

Check: $785 \equiv 5(\bmod 6) \quad$ Check!
$785 \equiv 4(\bmod 11)$ Check!
$785 \equiv 3(\bmod 17)$ Check!
(d) $2 x \equiv 1(\bmod 5) ; 3 x \equiv 9(\bmod 6) ; 4 x \equiv 1(\bmod 7) ; 5 x \equiv 9(\bmod 11)$

Same as: $2 x \equiv 1(\bmod 5) ; 3 x \equiv 3(\bmod 6) ; 4 x \equiv 1(\bmod 7) ; 5 x \equiv 9(\bmod 11)$
Since $1,6,7,11$ are pair-wise relatively prime, the system of congruences has a unique solution $\bmod (5 \cdot 6 \cdot 7 \cdot 11)$. (i.e., our solution is unique $\bmod (2310)$.)

However, our Theorem and algorithm requires congruences of the form:

$$
x \equiv a_{1}(\bmod n)
$$

So let's convert our congruences to that form:
$\overline{\underline{\mid 2 x \equiv 1(\bmod 5)}} \Rightarrow 3 \cdot 2 x \equiv 3 \cdot 1(\bmod 5) \Rightarrow 6 x \equiv 3(\bmod 5) \Rightarrow x \equiv 3(\bmod 5)$
i.e., $x \equiv 3(\bmod 5)$
$\xlongequal{\mid 3 x \equiv 3(\bmod 6)}$ Since, $\operatorname{gcd}(3,6) \neq 1$, we won't be able to get a congruence of the form $x \equiv a_{1}(\bmod n)$, just by multiplying both sides by "the right number." (Try it and see!)

Note also that since $\operatorname{gcd}(3,6)=3$, the congruence $3 x \equiv 3(\bmod 6)$ has three "proper" solutions.

To get a congruence of the form $x \equiv a_{1}(\bmod n)$, we can divide the entire congruence by 3 . The unique solution of the new congruence will also be a solution of the original congruence $3 x \equiv 3(\bmod 6)$.

$$
\begin{aligned}
& \frac{1}{3} \cdot 3 x \equiv \frac{1}{3} \cdot 3\left(\bmod \frac{1}{3} \cdot 6\right) \Rightarrow x \equiv 1(\bmod 2) \\
& \text { i.e., } x \equiv 1(\bmod 2)
\end{aligned}
$$

$$
\underline{\underline{4 x \equiv 1(\bmod 7)}} \Rightarrow 2 \cdot 4 x \equiv 2 \cdot 1(\bmod 7) \Rightarrow 8 x \equiv 2(\bmod 7) \Rightarrow x \equiv 2(\bmod 7)
$$

$$
\text { i.e., } x \equiv 2(\bmod 7)
$$

$$
\underline{\overline{\mid 5 x \equiv 9(\bmod 11)}} \Rightarrow 9 \cdot 5 x \equiv 9 \cdot 9(\bmod 11) \Rightarrow 45 x \equiv 81(\bmod 11) \Rightarrow x \equiv
$$ $4(\bmod 11)$

i.e., $x \equiv 4(\bmod 11)$

To get the solution:

1. Define $n=n_{1} n_{2} \ldots n_{r}$
i.e., $n=5 \cdot 2 \cdot 7 \cdot 11=770$

Define $N_{k}=\frac{n}{n_{k}}$ for $k=1,2, \ldots, r$.
$N_{1}=\frac{770}{5}=154$
$N_{2}=\frac{770}{2}=385$
$N_{3}=\frac{770}{7}=110$
$N_{4}=\frac{770}{11}=70$
2. Solve the related congruences:

$$
\begin{array}{ccc}
N_{1} x_{1} & \equiv & 1\left(\bmod n_{1}\right) \\
N_{2} x_{2} & \equiv & 1\left(\bmod n_{2}\right) \\
N_{3} x_{3} & \equiv & 1\left(\bmod n_{3}\right) \\
\vdots & \vdots & \vdots \\
N_{r} x_{r} & \equiv & 1\left(\bmod n_{r}\right)
\end{array}
$$

i.e., solve the congruences:

$$
\begin{aligned}
154 x_{1} & \equiv 1(\bmod 5) \\
385 x_{2} & \equiv 1(\bmod 2) \\
110 x_{3} & \equiv 1(\bmod 7) \\
70 x_{4} & \equiv 1(\bmod 11)
\end{aligned}
$$

This yields: $x_{1}=4 ; x_{2}=1 ; x_{3}=3 ; x_{4}=3$
3. Our solution is the number $x \equiv\left(a_{1} N_{1} x_{1}+a_{2} N_{2} x_{2}+\ldots+a_{r} N_{r} x_{r}\right)(\bmod (n))$.

Our solution is the number
$x \equiv(3 \cdot 154 \cdot 4+1 \cdot 385 \cdot 1+2 \cdot 110 \cdot 3+4 \cdot 70 \cdot 3)(\bmod (770)) \equiv$
$3733(\bmod (770)) \equiv 653(\bmod (770))$.
i.e., $x=653$

Check (The original system): $2(653) \equiv 1(\bmod 5) \quad$ Check! $3(653) \equiv 9(\bmod 6) \quad$ Check! $4(653) \equiv 1(\bmod 7) \quad$ Check! $5(653) \equiv 9(\bmod 11)$ Check!
8. When eggs in a basket are removed $2,3,4,5,6$, at a time, there remain, respectively, $1,2,3,4,5$ eggs. When they are taken out 7 at a time, none are left over. Find the smallest number of eggs that could have been in the basket.
This situation yields the system of congruences:

$$
\begin{aligned}
& x \equiv 1(\bmod 2) \\
& x \equiv 2(\bmod 3) \\
& x \equiv 3(\bmod 4) \\
& x \equiv 4(\bmod 5) \\
& x \equiv 5(\bmod 6) \\
& x \equiv 0(\bmod 7)
\end{aligned}
$$

To solve this, we will use the Chinese Remainder Theorem. However, there IS a catch. Given a system of congruences of the form $x \equiv a_{i}\left(\bmod n_{i}\right)$, the Chinese Remainder Theorem only applies when the n_{i} 's are pairwise relatively prime. This is not the case here.
To remedy this situation, we recognize that if the original system has a solution, then the related system:

$$
\begin{aligned}
& x \equiv 1(\bmod 2) \\
& x \equiv 2(\bmod 3) \\
& x \equiv 4(\bmod 5) \\
& x \equiv 0(\bmod 7)
\end{aligned}
$$

must have the same solution. The "related system" above is such that all of the n_{i} 's are pairwise relatively prime. Thus, the Chinese Remainder Theorem can be used to solve this "related system." If the original system has a solution (at this point, we're not sure that it does), it must be the exact same solution as that of the "related system." To get the solution to the "related system":
(a) 1. Define $n=n_{1} n_{2} \ldots n_{r}$

$$
\text { i.e., } n=2 \cdot 3 \cdot 5 \cdot 7=210
$$

Define $N_{k}=\frac{n}{n_{k}}$ for $k=1,2, \ldots, 4$.
$N_{1}=\frac{210}{2}=105$
$N_{2}=\frac{210}{3}=70$
$N_{4}=\frac{210}{5}=42$

$$
N_{6}=\frac{210}{7}=30
$$

2. Solve the related congruences:

$$
\begin{array}{ccc}
N_{1} x_{1} & \equiv & 1\left(\bmod n_{1}\right) \\
N_{2} x_{2} & \equiv & 1\left(\bmod n_{2}\right) \\
N_{4} x_{4} & \equiv & 1\left(\bmod n_{4}\right) \\
\vdots & \vdots & \vdots \\
N_{6} x_{6} & \equiv & 1\left(\bmod n_{6}\right)
\end{array}
$$

i.e., solve the congruences:

$$
\begin{aligned}
105 x_{1} & \equiv 1(\bmod 2) \\
70 x_{2} & \equiv 1(\bmod 3) \\
42 x_{3} & \equiv 1(\bmod 5) \\
30 x_{4} & \equiv 1(\bmod 7)
\end{aligned}
$$

This yields: $x_{1}=1 ; x_{2}=1 ; x_{4}=3 ; x_{6}=4$
3. Our solution is the number $x \equiv\left(a_{1} N_{1} x_{1}+a_{2} N_{2} x_{2}+a_{4} N_{4} x_{4}+a_{6} N_{6} x_{6}\right)(\bmod (n))$.

Our solution is the number
$x \equiv(1 \cdot 105 \cdot 1+2 \cdot 70 \cdot 1+4 \cdot 42 \cdot 3+0 \cdot 30 \cdot 4)(\bmod (210)) \equiv$
$749(\bmod (210)) \equiv 119(\bmod (210))$.
i.e., $x=119$

Check (The original system):

$$
\begin{array}{lll}
119 & \equiv 1(\bmod 2) & \text { Check! } \\
119 & \equiv 2(\bmod 3) & \text { Check! } \\
119 \equiv 3(\bmod 4) & \text { Check! } \\
119 \equiv 4(\bmod 5) & \text { Check! } \\
119 \equiv 5(\bmod 6) & \text { Check! } \\
119 \equiv 0(\bmod 7) & \text { Check! }
\end{array}
$$

9. The basket-of-eggs problem is often phrased in the following form: One egg remains when the eggs are removed from the basket $2,3,4,5$, or 6 at a time; but, no eggs remain if they are removed 7 at a time. Find the smallest number of eggs that could have been in the basket.

This situation yields the system of congruences:

$$
\begin{aligned}
& x \equiv 1(\bmod 2) \\
& x \equiv 1(\bmod 3) \\
& x \equiv 1(\bmod 4) \\
& x \equiv 1(\bmod 5) \\
& x \equiv 1(\bmod 6) \\
& x \equiv 0(\bmod 7)
\end{aligned}
$$

To solve this, we will use the Chinese Remainder Theorem. Again, however, there is a catch. Given a system of congruences of the form $x \equiv a_{i}\left(\bmod n_{i}\right)$, the Chinese Remainder Theorem only applies when the n_{i} 's are pairwise relatively prime. This is not the case here.
To remedy this situation, we recognize that if the original system has a solution, then the related system:

$$
\begin{aligned}
& x \equiv 1(\bmod 2) \\
& x \equiv 1(\bmod 3) \\
& x \equiv 1(\bmod 5) \\
& x \equiv 0(\bmod 7)
\end{aligned}
$$

must have the same solution. The "related system" above is such that all of the n_{i} 's are pairwise relatively prime. Thus, the Chinese Remainder Theorem can be used to solve this "related system." If the original system has a solution (at this point, we're not sure that it does), it must be the exact same solution as that of the "related system." To get the solution to the "related system":
(a) 1. Define $n=n_{1} n_{2} \ldots n_{r}$
i.e., $n=2 \cdot 3 \cdot 5 \cdot 7=210$

Define $N_{k}=\frac{n}{n_{k}}$ for $k=1,2, \ldots, 4$.
$N_{1}=\frac{210}{2}=105$
$N_{2}=\frac{210}{3}=70$
$N_{4}=\frac{210}{5}=42$
$N_{6}=\frac{210}{7}=30$
2. Solve the related congruences:

$$
\begin{array}{ccc}
N_{1} x_{1} & \equiv & 1\left(\bmod n_{1}\right) \\
N_{2} x_{2} & \equiv & 1\left(\bmod n_{2}\right) \\
N_{4} x_{4} & \equiv & 1\left(\bmod n_{4}\right) \\
\vdots & \vdots & \vdots \\
N_{6} x_{6} & \equiv & 1\left(\bmod n_{6}\right)
\end{array}
$$

i.e., solve the congruences:

$$
\begin{aligned}
105 x_{1} & \equiv 1(\bmod 2) \\
70 x_{2} & \equiv 1(\bmod 3) \\
42 x_{4} & \equiv 1(\bmod 5) \\
30 x_{6} & \equiv 1(\bmod 7)
\end{aligned}
$$

This yields: $x_{1}=1 ; x_{2}=1 ; x_{4}=3 ; x_{6}=4$
3. Our solution is the number $x \equiv\left(a_{1} N_{1} x_{1}+a_{2} N_{2} x_{2}+a_{4} N_{4} x_{4}+a_{6} N_{6} x_{6}\right)(\bmod (n))$.

The solution to the "related system" is the number
$x \equiv(1 \cdot 105 \cdot 1+1 \cdot 70 \cdot 1+1 \cdot 42 \cdot 3+0 \cdot 30 \cdot 4)(\bmod (210)) \equiv(4)(6)(210):$
5040
$301(\bmod (210)) \equiv 91(\bmod (210))$.
i.e., $x=91$

Check (The original system):

$$
\begin{array}{lll}
91 & \equiv 1(\bmod 2) & \text { Check! } \\
91 & \equiv 1(\bmod 3) & \text { Check! } \\
91 \equiv 1(\bmod 4) & \text { Doesn't Check } \\
91 & \equiv 1(\bmod 5) & \text { Check! } \\
91 \equiv 1(\bmod 6) & \text { Check! } \\
91 \equiv 0(\bmod 7) & \text { Check! }
\end{array}
$$

Houston - we have a problem!

Here's the problem: Our solution is the solution to the "related system."
$x \equiv(1 \cdot 105 \cdot 1+1 \cdot 70 \cdot 1+1 \cdot 42 \cdot 3+0 \cdot 30 \cdot 4)(\bmod (210))$, where $210=$ $n_{1} n_{2} n_{4} n_{6}$

In order to be sure that our solution is the solution to the "original system," we should compute:
$x \equiv(1 \cdot 105 \cdot 1+1 \cdot 70 \cdot 1+1 \cdot 42 \cdot 3+0 \cdot 30 \cdot 4)(\bmod (n))$,
where $n=n_{1} n_{2} n_{3} n_{4} n_{5} n_{6}=5040$
Thus, $x \equiv(1 \cdot 105 \cdot 1+1 \cdot 70 \cdot 1+1 \cdot 42 \cdot 3+0 \cdot 30 \cdot 4)(\bmod (5040))$
$\equiv 301(\bmod (5040))$
Check (The original system):

$$
\begin{array}{lll}
301 & \equiv 1(\bmod 2) & \text { Check! } \\
301 & \equiv 1(\bmod 3) & \text { Check! } \\
301 & \equiv 1(\bmod 4) & \text { Check } \\
301 & \equiv 1(\bmod 5) & \text { Check! } \\
301 & \equiv 1(\bmod 6) & \text { Check! } \\
301 & \equiv 0(\bmod 7) & \text { Check! }
\end{array}
$$

10. A band of 17 pirates stole a bag of gold coins. When they tried to divide the fortune into equal portions, 3 coins remained. In the ensuing brawl over who should get the extra coins, one pirate was killed. The wealth was redistributed, but this time an equal division left 10 coins. Again, another argument developed in which another pirate was killed. But now the total fortune was evenly distributed among the survivors. What is the least number of coins that could have been stolen?
Let x be the number of coins. Then

$$
\begin{aligned}
x & \equiv 3(\bmod 17) \\
x & \equiv 10(\bmod 16) \\
x & \equiv 0(\bmod 15)
\end{aligned}
$$

To solve this, we will use the Chinese Remainder Theorem. Here, $n_{1}=17, n_{2}=16$, $n_{3}=15$, so the n_{i} 's are pairwise relatively prime.
(a) 1. Define $n=n_{1} n_{2} \ldots n_{r}$
i.e., $n=17 \cdot 16 \cdot 15=4080$

Define $N_{k}=\frac{n}{n_{k}}$ for $k=1,2, \ldots, 4$.
$N_{1}=\frac{4080}{17}=240$
$N_{2}=\frac{4080}{16}=255$
$N_{3}=\frac{4080}{15}=272$
2. Solve the related congruences:

$$
\begin{aligned}
& N_{1} x_{1} \equiv 1\left(\bmod n_{1}\right) \\
& N_{2} x_{2} \equiv 1\left(\bmod n_{2}\right) \\
& N_{3} x_{3} \equiv 1\left(\bmod n_{3}\right)
\end{aligned}
$$

i.e., solve the congruences:

$$
\begin{aligned}
& 240 x_{1} \equiv 1(\bmod 17) \\
& 255 x_{2} \equiv 1(\bmod 16) \\
& 272 x_{3} \equiv 1(\bmod 15)
\end{aligned}
$$

This yields: $x_{1}=9 ; x_{2}=15 ; x_{3}=8$;
3. Our solution is the number $x \equiv\left(a_{1} N_{1} x_{1}+a_{2} N_{2} x_{2}+a_{3} N_{3} x_{3}\right)(\bmod (n))$.

Our solution is the number
$x \equiv(3 \cdot 240 \cdot 9+10 \cdot 255 \cdot 15+0 \cdot 272 \cdot 8)(\bmod (4080)) \equiv$
$44,730(\bmod (4080)) \equiv 3930(\bmod (4080))$.
i.e., $x=3930$

Check (The original system):

$$
\begin{array}{rll}
3930 & \equiv 3(\bmod 17) & \text { Check! } \\
3930 & \equiv 10(\bmod 16) & \text { Check! } \\
3930 & \equiv 0(\bmod 15) & \text { Check! }
\end{array}
$$

17. Find the solutions of the system of congruences:

$$
\begin{aligned}
& 3 x+4 y \equiv 5(\bmod 13) \\
& 2 x+5 y \equiv 7(\bmod 13)
\end{aligned}
$$

First, let's see if this system actually HAS a solution.
The system

$$
\begin{aligned}
a x+b y & \equiv r(\bmod n) \\
c x+d y & \equiv s(\bmod n)
\end{aligned}
$$

has a a unique solution exactly when $\operatorname{gcd}(a d-b c, n)=1$.
Check: $\operatorname{gcd}((3)(5)-(2)(4), 13)=\operatorname{gcd}(7,13)=1$
Hence, the system has a unique solution.
Multiply the first congruence by d and the second congruence by b.

$$
\begin{aligned}
3 \cdot 5 x+4 \cdot 5 y & \equiv 5 \cdot 5(\bmod 13) \\
2 \cdot 4 x+5 \cdot 4 y & \equiv 7 \cdot 4(\bmod 13)
\end{aligned}
$$

Subtract the second congruence from the first, to eliminate y.

$$
\begin{aligned}
15 x+20 y & \equiv 25(\bmod 13) \\
-8 x+20 y & \equiv 28(\bmod 13) \\
\hline 7 x & \equiv-3(\bmod 13)
\end{aligned}
$$

i.e., $7 x \equiv 10(\bmod 13)$

Multiply the equation $(a d-b c) x \equiv(d r-b s)(\bmod n)$ by an integer such that the left hand side becomes $x(\bmod n)$.

Observe: $2 \cdot 7 x=14 x \equiv x(\bmod 13)$
Thus, $2 \cdot 7 x \equiv 2 \cdot 10(\bmod 13) \Rightarrow x \equiv 20(\bmod 13) \Rightarrow x \equiv 7(\bmod 13)$

Perform the analogous process to solve for y.

Multiply the first congruence by c and the second congruence by a.

$$
\begin{aligned}
2 \cdot 3 x+2 \cdot 4 y & \equiv 2 \cdot 5(\bmod 13) \\
3 \cdot 2 x+3 \cdot 5 y & \equiv 3 \cdot 7(\bmod 13)
\end{aligned}
$$

Subtract the second congruence from the first, to eliminate y.

$$
\begin{aligned}
6 x+8 y & \equiv 10(\bmod 13) \\
-\frac{1}{6 x}+15 y & \equiv 21(\bmod 13) \\
\hline-7 y & \equiv-11(\bmod 13)
\end{aligned}
$$

i.e., $7 y \equiv 11(\bmod 13)$
$2 \cdot 7 y \equiv 2 \cdot 11(\bmod 13) \Rightarrow 14 y \equiv 22(\bmod 13) \Rightarrow y \equiv 9(\bmod 13)$

The unique solution of the system is $(x, y)=(7,9)$
19. Obtain the eight incongruent solutions of the linear congruence $3 x+4 y \equiv 5(\bmod 8)$.

Observe: If we multiply the congruence by 2 , we have:
$2 \cdot 3 x+2 \cdot 4 y \equiv 2 \cdot 5(\bmod 8) \Rightarrow 6 x+8 y \equiv 10(\bmod 8) \Rightarrow 6 x+8 y \equiv 2(\bmod 8) \Rightarrow 6 x \equiv$ $2(\bmod 8)$

This is of the form $a x \equiv b(\bmod n)$, which has a solution exactly when $d \mid b$, where $d=\operatorname{gcd}(a, n)$. Furthermore, if $d \mid b$, then there a d mutually incongruent solutions $\bmod n$.

Observe: $d=\operatorname{gcd}(6,8)=2$
Furthermore: 2|10 (i.e., $d \mid b$)
Hence, the congruence $6 x \equiv 2(\bmod 8)$ has $d=2$ mutually incongruent solutions $\bmod 8$, that are $\frac{n}{d}=4$ units apart.

To find one of the solutions, observe that $6 x \equiv 6 x-8 x(\bmod 8) \equiv-2 x(\bmod 8)$.
Thus, $6 x \equiv 2(\bmod 8)$ is the same as $-2 x \equiv 2(\bmod 8)$, which yields $x=-1 \equiv 7(\bmod 8)$ as a solution.

The other solution is $7+\frac{n}{d}=7+4=11 \equiv 3(\bmod 8)$
i.e., The solutions are $x=3$ and $x=7$

Similarly, the solutions of the congruence $6 x+8 y \equiv 2(\bmod 8)$ are $x=3$ and $x=7$.
But what about y ? Since $8 y \equiv 0(\bmod 8)$ for any value of y, y can be anything (even a ham sandwich)!

But what about the original congruence $3 x+4 y \equiv 5(\bmod 8) ?$
It is possible that when we multiplied both sides of the original congruence by 2 , that we introduced false solutions into the original congruence.

How do we deal with this?

For $x=3$

The original congruence becomes:
$3(3)+4 y \equiv 5(\bmod 8)$ same as $4 y \equiv-4(\bmod 8)$ same as $4 y \equiv 4(\bmod 8)$.
This has $d=4$ incongruent solutions spaced $\frac{n}{d}=2$ units apart.
Since $y=1$ is a solution, the solution set is $y=1,3,5,7$

For $x=7$

The original congruence becomes:
$3(7)+4 y \equiv 5(\bmod 8)$ same as $4 y \equiv-16(\bmod 8)$ same as $4 y \equiv 0(\bmod 8)$.
This has $d=0$ incongruent solutions spaced $\frac{n}{4}=4$ units apart.
Since $y=0$ is a solution, the solution set is $y=0,4$.

The solution set to the congruence $3 x+4 y \equiv 5(\bmod 8)$ is $(3,1) ;(3,3) ;(3,5) ;(3,7) ;(7,0) ;(7,4)$

20 a. Find the Solution for the system of congruences:
$5 x+3 y \equiv 1(\bmod 7)$
$3 x+2 y \equiv 4(\bmod 7)$
First, let's see if this system actually HAS a solution.
Recall: The system

$$
\begin{aligned}
a x+b y & \equiv r(\bmod n) \\
c x+d y & \equiv s(\bmod n)
\end{aligned}
$$

has a a unique solution exactly when $\operatorname{gcd}(a d-b c, n)=1$.
Check: $\operatorname{gcd}((5)(2)-(3)(3), 7)=\operatorname{gcd}(1,7)=1$
Hence, the system has a unique solution.
Multiply the first congruence by d and the second congruence by b.

$$
\begin{aligned}
2 \cdot 5 x+2 \cdot 3 y & \equiv 2 \cdot 1(\bmod 7) \\
3 \cdot 3 x+3 \cdot 2 y & \equiv 3 \cdot 4(\bmod 7)
\end{aligned}
$$

Subtract the second congruence from the first, to eliminate y.

$$
\begin{aligned}
& 10 x+6 y \equiv 2(\bmod 7) \\
&- \equiv x+6 y \\
& \hline x \equiv 12(\bmod 7) \\
& \hline x+10(\bmod 7)
\end{aligned}
$$

i.e., $x \equiv 4(\bmod 7)$

Perform the analogous process to solve for y.

Multiply the first congruence by c and the second congruence by a.

$$
\begin{aligned}
3 \cdot 5 x+3 \cdot 3 y & \equiv 3 \cdot 1(\bmod 7) \\
5 \cdot 3 x+5 \cdot 2 y & \equiv 5 \cdot 4(\bmod 7)
\end{aligned}
$$

Subtract the second congruence from the first, to eliminate y.

$$
\begin{aligned}
15 x+9 y & \equiv 3(\bmod 7) \\
-15 x+10 y & \equiv 20(\bmod 7) \\
\hline & -y
\end{aligned}
$$

i.e., $y \equiv 17(\bmod 7) \equiv 3(\bmod 7)$

The unique solution of the system is $(x, y)=(4,3)$

20 b. Find the Solution for the system of congruences:
$7 x+3 y \equiv 6(\bmod 11)$
$4 x+2 y \equiv 9(\bmod 11)$
First, let's see if this system actually HAS a solution.
The system

$$
\begin{aligned}
a x+b y & \equiv r(\bmod n) \\
c x+d y & \equiv s(\bmod n)
\end{aligned}
$$

has a a unique solution exactly when $\operatorname{gcd}(a d-b c, n)=1$.
Check: $\operatorname{gcd}((7)(2)-(3)(4), 11)=\operatorname{gcd}(2,11)=1$
Hence, the system has a unique solution.
Multiply the first congruence by d and the second congruence by b.

$$
\begin{aligned}
2 \cdot 7 x+2 \cdot 3 y & \equiv 2 \cdot 6(\bmod 11) \\
3 \cdot 4 x+3 \cdot 2 y & \equiv 3 \cdot 9(\bmod 11)
\end{aligned}
$$

Subtract the second congruence from the first, to eliminate y.

$$
\begin{aligned}
14 x+6 y & \equiv 12(\bmod 11) \\
-12 x+6 y & \equiv 27(\bmod 11) \\
\hline 2 x & \equiv-15(\bmod 11)
\end{aligned}
$$

i.e., $2 x \equiv 7(\bmod 11)$

Multiply the equation $(a d-b c) x \equiv(d r-b s)(\bmod n)$ by an integer such that the left hand side becomes $x(\bmod n)$.

Observe: $6 \cdot 2 x=12 x \equiv x(\bmod 11)$
Thus, $6 \cdot 2 x \equiv 6 \cdot 7(\bmod 11) \Rightarrow x \equiv 42(\bmod 11) \Rightarrow x \equiv 9(\bmod 11)$
Perform the analogous process to solve for y.
Multiply the first congruence by c and the second congruence by a.

$$
\begin{aligned}
4 \cdot 7 x+4 \cdot 3 y & \equiv 4 \cdot 6(\bmod 11) \\
7 \cdot 4 x+7 \cdot 2 y & \equiv 7 \cdot 9(\bmod 11)
\end{aligned}
$$

Subtract the second congruence from the first, to eliminate y.

$$
\begin{aligned}
28 x+12 y & \equiv 24(\bmod 11) \\
-28 x+14 y & \equiv 63(\bmod 11) \\
\hline-2 y & \equiv-39(\bmod 11)
\end{aligned}
$$

i.e., $9 y \equiv 5(\bmod 11)$

Observe: $5 \cdot 9 y=45 y \equiv y(\bmod 11)$
$\Rightarrow 5 \cdot 9 y \equiv 5 \cdot 5(\bmod 11) \Rightarrow y \equiv 25(\bmod 11) \Rightarrow y \equiv 3(\bmod 11)$

The unique solution of the system is $(x, y)=(9,3)$

20 c. Find the Solution for the system of congruences:
$11 x+5 y \equiv 7(\bmod 20)$
$6 x+3 y \equiv 8(\bmod 20)$
First, let's see if this system actually HAS a solution.
The system

$$
\begin{aligned}
a x+b y & \equiv r(\bmod n) \\
c x+d y & \equiv s(\bmod n)
\end{aligned}
$$

has a a unique solution exactly when $\operatorname{gcd}(a d-b c, n)=1$.
Check: $\operatorname{gcd}((3)(5)-(2)(4), 13)=\operatorname{gcd}(7,13)=1$
Hence, the system has a unique solution.
Multiply the first congruence by d and the second congruence by b.

$$
\begin{aligned}
& 3 \cdot 5 x+4 \cdot 5 y \equiv 5 \cdot 5(\bmod 13) \\
& 2 \cdot 4 x+5 \cdot 4 y \equiv 7 \cdot 4(\bmod 13)
\end{aligned}
$$

Subtract the second congruence from the first, to eliminate y.

$$
\begin{aligned}
15 x+20 y & \equiv 25(\bmod 13) \\
-8 x+20 y & \equiv 28(\bmod 13) \\
\hline 7 x & \equiv-3(\bmod 13)
\end{aligned}
$$

i.e., $7 x \equiv 10(\bmod 13)$

Multiply the equation $(a d-b c) x \equiv(d r-b s)(\bmod n)$ by an integer such that the left hand side becomes $x(\bmod n)$.

Observe: $2 \cdot 7 x=14 x \equiv x(\bmod 13)$
Thus, $2 \cdot 7 x \equiv 2 \cdot 10(\bmod 13) \Rightarrow x \equiv 20(\bmod 13) \Rightarrow x \equiv 7(\bmod 13)$

Perform the analogous process to solve for y.

Multiply the first congruence by c and the second congruence by a.

$$
\begin{aligned}
2 \cdot 3 x+2 \cdot 4 y & \equiv 2 \cdot 5(\bmod 13) \\
3 \cdot 2 x+3 \cdot 5 y & \equiv 3 \cdot 7(\bmod 13)
\end{aligned}
$$

Subtract the second congruence from the first, to eliminate y.

$$
\begin{aligned}
6 x+8 y & \equiv 10(\bmod 13) \\
-6 x+15 y & \equiv 21(\bmod 13) \\
\hline-7 y & \equiv-11(\bmod 13)
\end{aligned}
$$

i.e., $7 y \equiv 11(\bmod 13)$
$2 \cdot 7 y \equiv 2 \cdot 11(\bmod 13) \Rightarrow 14 y \equiv 22(\bmod 13) \Rightarrow y \equiv 9(\bmod 13)$

The unique solution of the system is $(x, y)=(7,9)$

