Proofs Involving Sets #4 (Proof by Contradiction) - Solutions

 $\mathrm{Fall}\ 2009$

Pat Rossi

Name _____

Instructions. Prove by Contradiction

1.
$$\underbrace{(A \cap B) \subseteq A}_{p}$$

Proof. (By contradiction). Suppose, for the sake of contradiction, that $\underbrace{(A \cap B) \not\subseteq A}_{\sim p}$.

 $\Rightarrow \exists x \in (A \cap B)$ such that $x \notin A$.

 $\Rightarrow x \in A \text{ and } x \in B \text{ and } x \notin A.$

In particular, $\Rightarrow \underbrace{x \in A}_{q}$ and $\underbrace{x \notin A}_{\sim q}$, a contradiction.

Since the assumption that $(A \cap B) \not\subseteq A$ leads to a contradiction, it must be false. Hence, $(A \cap B) \subseteq A$.

2.
$$\underbrace{U^c = \emptyset}_p$$

Proof. (By contradiction). Suppose, for the sake of contradiction, that $\underbrace{U^c \neq \emptyset}_{\sim n}$.

$$\Rightarrow \exists x \in U^c$$
$$\Rightarrow \underbrace{x \notin U}_q$$

This contradicts the definition of universe: $\underbrace{x \in U \ \forall x}_{\sim q}$.

Since the assumption that $U^c \neq \emptyset$ leads to a contradiction, it must be false.

Hence, $U^c = \emptyset$.

3. $\underbrace{(A \cap B) = \emptyset}_{\substack{\text{hypothesis}\\p}} \Rightarrow \underbrace{A \subseteq B^c}_{\substack{\text{conclusion}\\q}}$

Proof. (By contradiction). Let the hypothesis be given. (i.e., Suppose that $\underbrace{(A \cap B) = \emptyset}_p$

Suppose, for the sake of contradiction, that $\underbrace{A \not\subseteq B^c}_{\sim q}$.

 $\begin{array}{l} \Rightarrow \exists x \ \ni x \in A \ \text{and} \ x \notin B^c \\ \Rightarrow \exists x \ \ni x \in A \ \text{and} \ x \in B \\ \Rightarrow \exists x \ \ni x \in (A \cap B) \\ \Rightarrow \underbrace{(A \cap B) \neq \emptyset}_{\sim p}, \ \text{but this contradicts our hypothesis,} \ \underbrace{(A \cap B) = \emptyset}_p. \end{array}$

Since the assumption that $\underbrace{A \not\subseteq B^c}_{\sim q}$ leads to a contradiction, it must be false.

Hence, $\underbrace{A \subseteq B^c}_{q}$