## MTH 1126 - Test #2 - Solutions

 ${\rm Spring}~2017$ 

Pat Rossi

Name \_\_\_\_\_

Instructions. Show CLEARLY how you arrive at your answers.

1. Compute the arclength of the graph of the function  $f(x) = \frac{8}{3}x^{\frac{3}{2}} + 4$  from the point (0, 4) to the point (3, f(3)).

Use the formula: Arc Length  $=\int_{a}^{b}\sqrt{1+\left(f'\left(x
ight)
ight)^{2}}dx$ 

$$\begin{aligned} f'(x) &= 4x^{\frac{1}{2}} \\ (f'(x))^2 &= \left(4x^{\frac{1}{2}}\right)^2 = 16x \\ \Rightarrow \text{Arc Length} &= \int_a^b \sqrt{1 + (f'(x))^2} dx = \int_{x=0}^{x=3} \sqrt{1 + 16x} dx = \int_{x=0}^{x=3} \underbrace{(1 + 16x)^{\frac{1}{2}}}_{u^{\frac{1}{2}}} dx \\ \xrightarrow{u^{\frac{1}{2}}}_{\frac{1}{16}} du &= 16 \\ \Rightarrow du &= 16 \\ \Rightarrow \frac{1}{16} du &= dx \\ \text{When } x = 0, \ u = 1 + 16 \ (0) = 1 \\ \text{When } x = 3, \ u = 1 + 16 \ (3) = 49 \end{aligned}$$
$$= \int_{u=1}^{u=49} u^{\frac{1}{2}} \frac{1}{16} du = \frac{1}{16} \int_{u=1}^{u=49} u^{\frac{1}{2}} du = \frac{1}{16} \left[\frac{2}{3}u^{\frac{3}{2}}\right]_{u=1}^{u=49} = \frac{1}{24} (49)^{\frac{3}{2}} - \frac{1}{24} (1)^{\frac{3}{2}} = \frac{343}{24} - \frac{1}{24} \\ &= \frac{342}{24} = \frac{57}{4} \end{aligned}$$
i.e., Arclength =  $\frac{342}{24} = \frac{57}{4}$ 

2. Use the "f - g" method to compute the area bounded by the graphs of  $f(x) = 1 - x^2$ and g(x) = -x + 1.

First, graph the functions and find the points of intersection.

$$y = 1 - x^{2} = -x + 1$$
  
$$\Rightarrow -x^{2} + x = 0$$
  
$$\Rightarrow x (1 - x) = 0$$
  
$$x = 0; x = 1$$

Points of intersection are (0, 1) and (1, 0).



The bounded region spans the interval [0, 1] on the x-axis. Over this interval,  $f(x) = 1 - x^2$  is greater than g(x) = -x + 1. Hence the area is given by:

$$\int_0^1 \left[ (1 - x^2) - (-x + 1) \right] dx = \int_0^1 (-x^2 + x) dx = \left[ -\frac{1}{3}x^3 + \frac{1}{2}x^2 \right]_0^1$$
$$= \left( -\frac{1}{3}(1)^3 + \frac{1}{2}(1)^2 \right) - \left( -\frac{1}{3}(0)^3 + \frac{1}{2}(0)^2 \right) = \frac{1}{6}$$
i.e., bounded area =  $\frac{1}{6}$ 

3. Find the area bounded by the graphs of  $f(x) = 4x - x^2$  and g(x) = x. (Partition the appropriate interval, sketch the i<sup>th</sup> rectangle, build the Riemann Sum, derive the appropriate integral.)

Graph the functions and find the points of intersection.

To graph  $f(x) = 4x - x^2$ , note that <sup>1</sup>it is a parabola and <sup>2</sup>its maximum will be at the critical number.

Observe: f'(x) = 4 - 2x

Setting f'(x) = 0 (to find the critical number), we have: 4 - 2x = 0

 $\Rightarrow 4 = 2x \Rightarrow x = 2$  is the critical number.

Hence, the maximum, or vertex, will be (2, f(2)) = (2, 4)

Notice also, that to get the x-intercepts of f(x), we can set f(x) = 0, which yields:

 $4x - x^2 = 0 \Rightarrow x = 0$  and x = 4 are the x-intercepts.

To find the points of intersection of the graphs f(x) and g(x), we set f(x) = g(x), and this will give us the y-coordinates of the points of intersection.

 $y = 4x - x^{2} = x$   $\Rightarrow 3x - x^{2} = 0$   $\Rightarrow x (3 - x) = 0.$  $\Rightarrow x = 0; \text{ and } x = 3.$ 

Points of intersection: (0,0) and (3,3).



The rectangles span the interval [0,3] on the x-axis, so we will partition that interval into sub-intervals of length  $\Delta x$ .

The area of the *i*<sup>th</sup> rectangle is  $\underbrace{\left(\left(4x_i - x_i^2\right) - x_i\right)}_{\text{height}} \cdot \underbrace{\Delta x}_{\text{width}} = (3x_i - x_i^2) \Delta x$ 

(see below)



To approximate the area of the bounded region, we add the areas of the rectangles:

$$A \approx \sum_{i=1}^{n} \left( 3x_i - x_i^2 \right) \Delta x$$

To get the exact area, we let  $\Delta x \to 0$ .

$$A = \lim_{\Delta x \to 0} \sum_{i=1}^{n} (3x_i - x_i^2) \Delta x = \int_0^3 (3x - x^2) dx = \left[\frac{3}{2}x^2 - \frac{1}{3}x^3\right]_0^3$$
$$= \left(\frac{3}{2}(3)^2 - \frac{1}{3}(3)^3\right) - \left(\frac{3}{2}(0)^2 - \frac{1}{3}(0)^3\right) = \frac{9}{2}$$
i.e., bounded area =  $\frac{9}{2}$ 

4. Six pounds of force is required to stretch a spring 3 inches past the point of equilibrium. How much work is done stretching the free end of the spring from 3 inches past equilibrium to 12 inches past the point of equilibrium? (Partition the appropriate interval, compute  $F_i$ , build the Riemann Sum, derive the appropriate integral.)



First, we have to find the spring constant k, using the values F = 6 lb and

s = 3 inches  $= \frac{1}{4}$  ft = 0.25 ft

From Hooke's Law (F = ks) we have  $k = \frac{F}{s} = \frac{6 \text{ lb}}{0.25 \text{ ft}} = 24 \frac{\text{lb}}{\text{ft}}$ 

i.e., 
$$k = 24 \frac{\text{lb}}{\text{ft}}$$

Hence, we have:  $F = 24 \frac{\text{lb}}{\text{ft}} s$ 

Next, partition the interval, over which the work is to be performed, and compute  $W_i$ , the work done stretching the spring from one side of the  $i^{th}$  sub-interval to the other side of the  $i^{th}$  sub-interval. (see below)





Here,  $d_i$  is the distance over which the work  $W_i$  is performed

$$\begin{aligned} d_i &= \Delta x \\ F_i &= k s_i = 24 \frac{\text{lb}}{\text{ft}} x_i \\ \text{Hence, } W_i &= F_i d_i = 24 \frac{\text{lb}}{\text{ft}} x_i \Delta x \\ \text{i.e., } W_i &= 24 \frac{\text{lb}}{\text{ft}} x_i \Delta x \end{aligned}$$

The total work,  $W_T$ , is approximately the sum of the work done stretching the spring across each sub-interval.

$$W_{T} \approx \sum_{i=1}^{n} 24 \frac{\text{lb}}{\text{ft}} x_{i} \Delta x$$

$$W_{T} = \lim_{\Delta x \to 0} \sum_{i=1}^{n} 24 \frac{\text{lb}}{\text{ft}} x_{i} \Delta x = \int_{\frac{1}{4}}^{1} \frac{\text{ft}}{\text{ft}} 24 \frac{\text{lb}}{\text{ft}} x \, dx = 24 \frac{\text{lb}}{\text{ft}} \int_{\frac{1}{4}}^{1} \frac{\text{ft}}{\text{ft}} x \, dx = 24 \frac{\text{lb}}{\text{ft}} \left[ \frac{x^{2}}{2} \right]_{\frac{1}{4}}^{1} \frac{\text{ft}}{\text{ft}}$$

$$= 24 \frac{\text{lb}}{\text{ft}} \left[ \left( \frac{(1 \text{ ft})^{2}}{2} \right) - \left( \frac{\left(\frac{1}{4} \text{ ft}\right)^{2}}{2} \right) \right] = 24 \frac{\text{lb}}{\text{ft}} \left( \frac{15}{32} \text{ ft} \right) = \frac{45}{4} \text{ lb ft}$$
i.e.,  $W_{T} = \frac{45}{4} \text{ lb ft}$ 

- 5. Use the "disc method" to compute the volume of the solid of revolution generated by revolving the region bounded by the graphs of  $f(x) = x^{\frac{1}{2}}$ , x = 1, x = 4, and the *x*-axis, about the *x*-axis. (For your information: the equation of the *x*-axis is y = 0.) Use the "five step method" (partition the interval, sketch the i<sup>th</sup> rectangle, form the sum, take the limit)
  - i. First, graph the bounded area.



ii. Sketch a rectangle perpendicular (perpen-"disc"-ular) to the axis of revolution and partition the interval spanned by the rectangles.



iii. Revolve the  $i^{th}$  rectangle about the axis of revolution.

Vol. of i<sup>th</sup> disc = 
$$\pi R_i^2 \Delta x = \pi \left(x_i^{\frac{1}{2}}\right)^2 \Delta x = \pi \left(x_i\right) \Delta x$$

iv. Approximate the volume of the solid of revolution by adding up the volumes of the discs

$$Vol \approx \sum_{i=1}^{n} \pi x_i \Delta x$$

v. Let  $\Delta x \to 0$ 

$$Vol \approx \lim_{\Delta x \to 0} \sum_{i=1}^{n} \pi x_i \Delta x = \int_{x=1}^{x=4} \pi x dx$$
$$= \pi \left[ \frac{x^2}{2} \right]_{x=1}^{x=4} = \pi \frac{(4)^2}{2} - \pi \frac{(1)^2}{2} = \frac{15\pi}{2}$$
i.e., Volume =  $\frac{15\pi}{2}$ 

6. Use the "shell method" to compute the volume of the solid of revolution generated by revolving the region described below about the *y*-axis.

The region lies to the right of the y-axis and is bounded by the graph  $f(x) = x^2 + 3$ , the y-axis, and the graph  $g(x) = 4x^2$ .

Use the "five step method" (partition the interval, sketch the  $i^{th}$  rectangle, form the sum, take the limit)

- i. First, graph the bounded area. To find the points of intersection, set the y-coordinates equal to one another.  $y = x^2 + 3 = 4x^2$   $\Rightarrow -3x^2 + 3 = 0$   $\Rightarrow x^2 - 1 = 0$   $\Rightarrow (x + 1)(x - 1) = 0$   $\Rightarrow x = -1; x = 1$ (-1, 4) (0, 3) (1, 4) (0, 3) (1, 4) (0, 3) (0, 0)
- ii. Sketch a rectangle *parallel* to the axis of revolution ("shell parallel"), and partition the interval spanned by the rectangles



iii. Revolve the i<sup>th</sup> rectangle about the axis of revolution to form the i<sup>th</sup> shell.

Vol. i<sup>th</sup> shell =  $2\pi R_i h_i \Delta x = 2\pi x_i \left( (x_i^2 + 3) - 4x_i^2 \right) \Delta x$ =  $2\pi x_i \left( 3 - 3x_i^2 \right) \Delta x = 2\pi \left( 3x_i - 3x_i^3 \right) \Delta x$ 

iv. Approximate the volume of the solid of revolution by adding the volumes of the shells.

$$Vol \approx \sum_{i=1}^{n} 2\pi \left(3x_i - 3x_i^3\right) \Delta x$$

v. Let  $\Delta x \to 0$ 

$$Vol = \lim_{\Delta x \to 0} \sum_{i=1}^{n} 2\pi \left( 3x_i - 3x_i^3 \right) \Delta x = \int_{x=0}^{x=1} 2\pi \left( 3x - 3x^3 \right) dx$$
$$= 2\pi \left[ \frac{3}{2}x^2 - \frac{3}{4}x^4 \right]_{x=0}^{x=1}$$
$$= 2\pi \left( \frac{3}{2} \left( 1 \right)^2 - \frac{3}{4} \left( 1 \right)^4 \right) - 2\pi \left( \frac{3}{2} \left( 0 \right)^2 - \frac{3}{4} \left( 0 \right)^4 \right)$$
$$= \frac{3\pi}{2}$$

i.e.,  $Vol = \frac{3\pi}{2}$