MTH 1126-Test \#2-Solutions
 Spring 2017

Pat Rossi
Name \qquad

Instructions. Show CLEARLY how you arrive at your answers.

1. Compute the arclength of the graph of the function $f(x)=\frac{8}{3} x^{\frac{3}{2}}+4$ from the point $(0,4)$ to the point $(3, f(3))$.

Use the formula: Arc Length $=\int_{a}^{b} \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x$

$$
\begin{aligned}
& f^{\prime}(x)=4 x^{\frac{1}{2}} \\
& \left(f^{\prime}(x)\right)^{2}=\left(4 x^{\frac{1}{2}}\right)^{2}=16 x \\
& \Rightarrow \text { Arc Length }=\int_{a}^{b} \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x=\int_{x=0}^{x=3} \sqrt{1+16 x} d x=\int_{x=0}^{x=3} \underbrace{(1+16 x)^{\frac{1}{2}}}_{u^{\frac{1}{2}}} \underbrace{d x}_{\frac{1}{16} d u}
\end{aligned}
$$

$$
\begin{aligned}
\begin{aligned}
u & = \\
\Rightarrow & 1+16 x \\
\Rightarrow \quad d u= & 16 \\
\Rightarrow \quad \frac{1}{16} d u= & d x \\
& \text { When } x=0, u=1+16(0)=1 \\
& \text { When } x=3, u=1+16(3)=49
\end{aligned} \\
=\int_{u=1}^{u=49} u^{\frac{1}{2}} \frac{1}{16} d u=\frac{1}{16} \int_{u=1}^{u=49} u^{\frac{1}{2}} d u=\frac{1}{16}\left[\frac{2}{3} u^{\frac{3}{2}}\right]_{u=1}^{u=49}=\frac{1}{24}(49)^{\frac{3}{2}}-\frac{1}{24}(1)^{\frac{3}{2}}=\frac{343}{24}-\frac{1}{24} \\
=\frac{342}{24}=\frac{57}{4}
\end{aligned}
$$

i.e., Arclength $=\frac{342}{24}=\frac{57}{4}$
2. Use the " $f-g$ " method to compute the area bounded by the graphs of $f(x)=1-x^{2}$ and $g(x)=-x+1$.

First, graph the functions and find the points of intersection.
$y=1-x^{2}=-x+1$
$\Rightarrow-x^{2}+x=0$
$\Rightarrow x(1-x)=0$
$x=0 ; x=1$
Points of intersection are $(0,1)$ and $(1,0)$.

The bounded region spans the interval $[0,1]$ on the x-axis. Over this interval, $f(x)=$ $1-x^{2}$ is greater than $g(x)=-x+1$. Hence the area is given by:

$$
\begin{aligned}
& \int_{0}^{1}\left[\left(1-x^{2}\right)-(-x+1)\right] d x=\int_{0}^{1}\left(-x^{2}+x\right) d x=\left[-\frac{1}{3} x^{3}+\frac{1}{2} x^{2}\right]_{0}^{1} \\
& =\left(-\frac{1}{3}(1)^{3}+\frac{1}{2}(1)^{2}\right)-\left(-\frac{1}{3}(0)^{3}+\frac{1}{2}(0)^{2}\right)=\frac{1}{6} \\
& \text { i.e., bounded area }=\frac{1}{6}
\end{aligned}
$$

3. Find the area bounded by the graphs of $f(x)=4 x-x^{2}$ and $g(x)=x$. (Partition the appropriate interval, sketch the $\mathrm{i}^{\text {th }}$ rectangle, build the Riemann Sum, derive the appropriate integral.)

Graph the functions and find the points of intersection.
To graph $f(x)=4 x-x^{2}$, note that ${ }^{1}$ it is a parabola and ${ }^{2}$ its maximum will be at the critical number.

Observe: $f^{\prime}(x)=4-2 x$
Setting $f^{\prime}(x)=0$ (to find the critical number), we have: $4-2 x=0$
$\Rightarrow 4=2 x \Rightarrow x=2$ is the critical number.
Hence, the maximum, or vertex, will be $(2, f(2))=(2,4)$
Notice also, that to get the x-intercepts of $f(x)$, we can set $f(x)=0$, which yields:
$4 x-x^{2}=0 \Rightarrow x=0$ and $x=4$ are the x -intercepts.
To find the points of intersection of the graphs $f(x)$ and $g(x)$, we set $f(x)=g(x)$, and this will give us the y -coordinates of the points of intersection.

$$
\begin{aligned}
& y=4 x-x^{2}=x \\
& \Rightarrow 3 x-x^{2}=0 \\
& \Rightarrow x(3-x)=0 \\
& \Rightarrow x=0 ; \text { and } x=3 .
\end{aligned}
$$

Points of intersection: $(0,0)$ and $(3,3)$.

The rectangles span the interval $[0,3]$ on the x-axis, so we will partition that interval into sub-intervals of length Δx.

The area of the $i^{\text {th }}$ rectangle is $\underbrace{\left(\left(4 x_{i}-x_{i}^{2}\right)-x_{i}\right)}_{\text {height }} \cdot \underbrace{\Delta x}_{\text {width }}=\left(3 x_{i}-x_{i}^{2}\right) \Delta x$
(see below)

To approximate the area of the bounded region, we add the areas of the rectangles: $A \approx \sum_{i=1}^{n}\left(3 x_{i}-x_{i}^{2}\right) \Delta x$

To get the exact area, we let $\Delta x \rightarrow 0$.

$$
\begin{aligned}
& A=\lim _{\Delta x \rightarrow 0} \sum_{i=1}^{n}\left(3 x_{i}-x_{i}^{2}\right) \Delta x=\int_{0}^{3}\left(3 x-x^{2}\right) d x=\left[\frac{3}{2} x^{2}-\frac{1}{3} x^{3}\right]_{0}^{3} \\
& =\left(\frac{3}{2}(3)^{2}-\frac{1}{3}(3)^{3}\right)-\left(\frac{3}{2}(0)^{2}-\frac{1}{3}(0)^{3}\right)=\frac{9}{2}
\end{aligned}
$$

i.e., bounded area $=\frac{9}{2}$
4. Six pounds of force is required to stretch a spring 3 inches past the point of equilibrium. How much work is done stretching the free end of the spring from 3 inches past equilibrium to 12 inches past the point of equilibrium? (Partition the appropriate interval, compute F_{i}, build the Riemann Sum, derive the appropriate integral.)

First, we have to find the spring constant k, using the values $F=6 \mathrm{lb}$ and
$s=3$ inches $=\frac{1}{4} \mathrm{ft}=0.25 \mathrm{ft}$
From Hooke's Law ($F=k s$) we have $k=\frac{F}{s}=\frac{6 \mathrm{lb}}{0.25 \mathrm{ft}}=24 \frac{\mathrm{lb}}{\mathrm{ft}}$
i.e., $k=24 \frac{\mathrm{lb}}{\mathrm{ft}}$

Hence, we have: $F=24 \frac{\mathrm{lb}}{\mathrm{ft}} s$
Next, partition the interval, over which the work is to be performed, and compute W_{i}, the work done stretching the spring from one side of the $i^{\text {th }}$ sub-interval to the other side of the $i^{\text {th }}$ sub-interval. (see below)

$W_{i}=F_{i} d_{i}$
Here, d_{i} is the distance over which the work W_{i} is performed
$d_{i}=\Delta x$
$F_{i}=k s_{i}=24 \frac{\mathrm{lb}}{\mathrm{ft}} x_{i}$
Hence, $W_{i}=F_{i} d_{i}=24 \frac{\mathrm{lb}}{\mathrm{ft}} x_{i} \Delta x$
i.e., $W_{i}=24 \frac{\mathrm{lb}}{\mathrm{ft}} x_{i} \Delta x$

The total work, W_{T}, is approximately the sum of the work done stretching the spring across each sub-interval.
$W_{T} \approx \sum_{i=1}^{n} 24 \frac{\mathrm{lb}}{\mathrm{ft}} x_{i} \Delta x$
$W_{T}=\lim _{\Delta x \rightarrow 0} \sum_{i=1}^{n} 24 \frac{\mathrm{lb}}{\mathrm{ft}} x_{i} \Delta x=\int_{\frac{1}{4} \mathrm{ft}}^{1} 24 \frac{\mathrm{lb}}{\mathrm{ft}} x d x=24 \frac{\mathrm{lb}}{\mathrm{ft}} \int_{\frac{1}{4} \mathrm{ft}}^{1 \mathrm{ft}} x d x=24 \frac{\mathrm{lb}}{\mathrm{ft}}\left[\frac{x^{2}}{2}\right]_{\frac{1}{4} \mathrm{ft}}^{1 \mathrm{ft}}$
$=24 \frac{\mathrm{lb}}{\mathrm{ft}}\left[\left(\frac{(1 \mathrm{ft})^{2}}{2}\right)-\left(\frac{\left(\frac{1}{4} \mathrm{ft}\right)^{2}}{2}\right)\right]=24 \frac{\mathrm{lb}}{\mathrm{ft}}\left(\frac{15}{32} \mathrm{ft}\right)=\frac{45}{4} \mathrm{lb} \mathrm{ft}$
i.e., $W_{T}=\frac{45}{4} \mathrm{lb} \mathrm{ft}$
5. Use the "disc method" to compute the volume of the solid of revolution generated by revolving the region bounded by the graphs of $f(x)=x^{\frac{1}{2}}, x=1, x=4$, and the x-axis, about the x-axis. (For your information: the equation of the x-axis is $y=0$.) Use the "five step method" (partition the interval, sketch the $i^{\text {th }}$ rectangle, form the sum, take the limit)
i. First, graph the bounded area.

ii. Sketch a rectangle perpendicular (perpen-"disc"-ular) to the axis of revolution and partition the interval spanned by the rectangles.

iii. Revolve the $i^{\text {th }}$ rectangle about the axis of revolution.

Vol. of $\mathrm{i}^{\text {th }}$ disc $=\pi R_{i}^{2} \Delta x=\pi\left(x_{i}^{\frac{1}{2}}\right)^{2} \Delta x=\pi\left(x_{i}\right) \Delta x$
iv. Approximate the volume of the solid of revolution by adding up the volumes of the discs
$V o l \approx \sum_{i=1}^{n} \pi x_{i} \Delta x$
v. Let $\Delta x \rightarrow 0$
$V o l \approx \lim _{\Delta x \rightarrow 0} \sum_{i=1}^{n} \pi x_{i} \Delta x=\int_{x=1}^{x=4} \pi x d x$

$$
=\pi\left[\frac{x^{2}}{2}\right]_{x=1}^{x=4}=\pi \frac{(4)^{2}}{2}-\pi \frac{(1)^{2}}{2}=\frac{15 \pi}{2}
$$

i.e., Volume $=\frac{15 \pi}{2}$
6. Use the "shell method" to compute the volume of the solid of revolution generated by revolving the region described below about the y-axis.

The region lies to the right of the y-axis and is bounded by the graph $f(x)=x^{2}+3$, the y-axis, and the graph $g(x)=4 x^{2}$.

Use the "five step method" (partition the interval, sketch the $i^{\text {th }}$ rectangle, form the sum, take the limit)
i. First, graph the bounded area.

To find the points of intersection, set the y-coordinates equal to one another.

$$
y=x^{2}+3=4 x^{2}
$$

$\Rightarrow-3 x^{2}+3=0$
$\Rightarrow x^{2}-1=0$
$\Rightarrow(x+1)(x-1)=0$
$\Rightarrow x=-1 ; x=1$

ii. Sketch a rectangle parallel to the axis of revolution ("shell - parallel"), and partition the interval spanned by the rectangles

iii. Revolve the $\mathrm{i}^{\text {th }}$ rectangle about the axis of revolution to form the $\mathrm{i}^{\text {th }}$ shell.

Vol. $\mathrm{i}^{\text {th }}$ shell $=2 \pi R_{i} h_{i} \Delta x=2 \pi x_{i}\left(\left(x_{i}^{2}+3\right)-4 x_{i}^{2}\right) \Delta x$

$$
=2 \pi x_{i}\left(3-3 x_{i}^{2}\right) \Delta x=2 \pi\left(3 x_{i}-3 x_{i}^{3}\right) \Delta x
$$

iv. Approximate the volume of the solid of revolution by adding the volumes of the shells.
$V o l \approx \sum_{i=1}^{n} 2 \pi\left(3 x_{i}-3 x_{i}^{3}\right) \Delta x$
v. Let $\Delta x \rightarrow 0$

$$
\begin{aligned}
& \begin{aligned}
& \text { Vol }=\lim _{\Delta x \rightarrow 0} \sum_{i=1}^{n} 2 \pi\left(3 x_{i}-3 x_{i}^{3}\right) \Delta x=\int_{x=0}^{x=1} 2 \pi\left(3 x-3 x^{3}\right) d x \\
&=2 \pi\left[\frac{3}{2} x^{2}-\frac{3}{4} x^{4}\right]_{x=0}^{x=1} \\
&=2 \pi\left(\frac{3}{2}(1)^{2}-\frac{3}{4}(1)^{4}\right)-2 \pi\left(\frac{3}{2}(0)^{2}-\frac{3}{4}(0)^{4}\right) \\
&=\frac{3 \pi}{2} \\
& \text { i.e., } V o l=\frac{3 \pi}{2}
\end{aligned}
\end{aligned}
$$

