Differential Equations Practice Test \#1

Spring 2004

Pat Rossi
Name \qquad

Instructions. Answers follow this section. Solutions follow the answers.

1. Classify the following according to order and linearity.
(a) $y^{\prime \prime \prime}-2 y^{\prime \prime}-5 y^{\prime}+6 y=0$
(b) $\left(y^{\prime}\right)^{3}=y$
(c) $\frac{d^{2} s}{d t^{2}}=-9 s$
(d) $y^{\prime \prime}-3 y^{\prime}-10 y=6 e^{x}$
2. Solve: $\quad \frac{d y}{d x}=-\frac{x}{y} ; \quad y=2$ when $x=1$
3. Show that the function $y=c_{1} e^{x}+c_{2} e^{-x}-4 x$ is a solution of the differential equation $y^{\prime \prime}-y=4 x$. Given the initial conditions, $y(0)=2 \quad$ and $\quad y^{\prime}(0)=0$, obtain a particular solution.
4. Solve: $\quad y^{\prime}=8 x y+3 y \quad y(-1)=1$ (Solve as "Linear First Order" $\left(y^{\prime}+P(x) y=Q(x)\right)$ AND by Separation of Variables.)(Assume $y>0$)
5. Solve: $\quad x d y=(2 y+3 x) d x$ (Solve as "Linear First Order" $\left(y^{\prime}+P(x) y=Q(x)\right)$ AND by Substitution, $\left.v=\left(\frac{y}{x}\right).\right)($ Assume $x, y,>0)$
6. Solve: $\quad I^{\prime}+3 I=e^{-2 t} ; \quad I(0)=5$
7. Solve: $\quad \frac{d I}{d t}+\frac{10 I}{2 t+5}=10 ; \quad I(0)=0$
8. Solve: $\quad y^{\prime}=\frac{x-y}{x+y}$ (Make no assumptions about x and y)
