MTH 4436 Homework Set 3.3; page 58

Spring 2012

Pat Rossi
Name \qquad

1. Verify that the integers 1949 and 1951 are twin primes.

Observe: $\sqrt{1951}=44.17$
To show that 1949 and 1951 are twin primes, we'll show that neither has a prime factor less than $\sqrt{1951}=44.17$.

p	$1949=$	$1951=$
2	$1949=2(974)+1$	$1951=2(975)+1$
3	$1949=3(649)+2$	$1951=3(650)+1$
5	$1949=5(389)+4$	$1951=5(390)+1$
7	$1949=7(278)+3$	$1951=7(278)+5$
11	$1949=11(177)+2$	$1951=11(177)+4$
13	$1949=13(149)+12$	$1951=13(150)+1$
17	$1949=17(114)+11$	$1951=17(114)+13$
19	$1949=19(102)+11$	$1951=19(102)+13$
23	$1949=23(84)+17$	$1951=23(84)+19$
29	$1949=29(67)+6$	$1951=29(67)+8$
31	$1949=31(62)+27$	$1951=31(62)+29$
37	$1949=37(52)+25$	$1951=37(52)+27$
41	$1949=41(47)+22$	$1951=41(47)+24$
43	$1949=43(45)+14$	$1951=43(45)+16$

Since neither 1949 nor 1951 has a prime factor less than $\sqrt{1951}=44.17$, both are prime. (i.e., 1949 and 1951 are twin primes.)
2.
(a) Prove: If 1 is added to the product of twin primes, prove that the result is a perfect square.
Proof. Given any twin prime pair, we can represent the pair as $\langle p, p+2\rangle$. If we add 1 to the product, we have $p(p+2)+1=p^{2}+2 p+1=(p+1)^{2}$, which is a perfect square.
(b) Show that the sum of twin primes, p and $p+2$ is divisible by 12 , provided that $p>3$.

Proof. Let $c=p+(p+2)$, where p and $p+2$ are prime. Since $\operatorname{gcd}(3,4)=1$, it will follow that if $3 \mid c$ and $4 \mid c$, then $(3 \cdot 4) \mid c$.
i.e., $12 \mid c$.

Hence our proof boils down to showing that $3 \mid c$ and $4 \mid c$. (i.e., $3 \mid[p+(p+2)]$ and $4 \mid[p+(p+2)])$
$\underline{\underline{||c|}[p+(p+2)]}$
Note that p must have one of the following three forms:
$p=3 k ; \quad p=3 k+1 ; \quad p=3 k+2, \quad$ for some natural number k.
Case 1: $p=3 k$
This can't happen, because this would make p composite, contrary to hypothesis.
Case 2: $p=3 k+1$
This can't happen, because this would make $p+2=(3 k+1)+3=3 k+3=$ $3(k+1)$.
i.e., $p+2$ would be composite, contrary to hypothesis.

This leaves ...
Case 3: $p=3 k+2$ (This MUST be the case!)
Hence, $p+2=(3 k+2)+2=3 k+4$.
Observe: $p+(p+2)=(3 k+2)+(3 k+4)=3 k+6=3(k+2)$
Thus, $3 \mid[p+(p+2)]$
$4|[p+(p+2)]|$
Since $p>3, p$ must be odd. Hence, $p=2 k+1$, for some natural number k.
Thus, $p+(p+2)=(2 k+1)+[(2 k+1)+2]=4 k+4=4(k+1)$
Thus, $4 \mid[p+(p+2)]$, and our claim is proved.
3. Find all pairs of primes p and q satisfying $p-q=3$.

Observe: The difference of two even numbers is an even number. The difference of two odd numbers is an even number. Since $p-q$ is odd, one of these must be even, and the other odd. Since 2 is the only even prime, and since 2 is the smallest prime, we must have $q=2$. Hence, $p=5$.
This is the only such pair of primes p and q satisfying $p-q=3$.
9. (a) For $n>3$, show that $n, n+2$, and $n+4$ cannot all be prime.

Proof. Let $n>3$.
Note that n must have on of the following three forms:
$n=3 k ; \quad n=3 k+1 ; \quad n=3 k+2, \quad$ for some natural number k.
Case 1, $n=3 k$
In this case, n is not prime, as $3 \mid n$
Case 2, $n=3 k+1$
Then $n+2=(3 k+1)+2=3 k+3=3(k+1)$.
i.e., $n+2=3(k+1)$.

In this case, $n+2$ is not prime, as $3 \mid(n+2)$
Case 3, $n=3 k+2$
Then $n+4=(3 k+2)+4=3 k+6=3(k+2)$
i.e., $n+4=3(k+2)$

In this case, $n+4$ is not prime, as $3 \mid(n+4)$
b. Three integers $p, p+2, p+6$, which are all prime, are called a prime triplet. Find five sets of prime triplets.

Observe: since $p, p+2$ constitute a twin prime pair, consider all twin prime pairs.

p		$p+2$	$p+6$
3	5	9 No!	
5	7		11 Yes!
11	13		17 Yes!
17	19	23 Yes!	
29	31	35 No!	
41	43	47 Yes!	
59	61		65 No!
71	73	77 No!	
101	103		107 Yes!

