# MTH 4441 Test \#1 

Fall 2022
Pat Rossi
Name $\qquad$

## 1. Define: Group

A non-empty set $G$ together with a binary operation $*$ on $G$ form a group, denoted $(G, *)$, exactly when the following four "group axioms" hold:

- $G$ is "closed under * ."
-     * is associative
- $\exists e \in G$ such that $e * x=x=x * e, \forall x \in G$

We call $e$ the identity element

- $\forall x \in G, \exists y \in G$ such that $x * y=e$ and $y * x=e$

We call $y$ the inverse of $x$

## 2. Define: Binary operation

Given a non-empty set $S$, a binary operation $*$ on the set $S$ is a rule that assigns an element $x_{3}$ to each ordered pair $\left(x_{1}, x_{2}\right)$ of elements in $S$.The assignment is made in this manner:

$$
x_{1} * x_{2}=x_{3}
$$

3. Define: Integers $a$ and $b$ congruent modulo $n$.

Let $n \geq 2$ be a natural number. Then integers $a$ and $b$ are congruent modulo $n$, denoted $a \equiv b(\bmod n)$, exactly when $a-b=k n$, for some integer $k$. (i.e., $a \equiv b(\bmod n)$ exactly when $a-b$ is a multiple of $n$.) Otherwise, $a$ and $b$ are incongruent modulo $n$, denoted $a \neq b(\bmod n)$.
4. Give an alternate characterization of congruence modulo $n$.

Let $n \geq 2$ be a natural number. Then integers $a$ and $b$ are congruent modulo $n$, denoted $a \equiv b(\bmod n)$, exactly when $a$ and $b$ have the same "proper remainder" (i.e., $r \in\{0,1,2, \ldots, n-1\}$ ) when divided by $n$. Otherwise, $a$ and $b$ are incongruent modulo $n$, denoted $a \equiv b(\bmod n)$.
5. Define: $\left(\mathbb{Z}_{n}, \oplus\right)$ (the additive group of integers modulo $n$ )

Let $n \geq 2$ and let $\mathbb{Z}_{n}=\{0,1,2, \ldots, n-1\}$. The additive group of integers modulo $n$, is the group $\left(\mathbb{Z}_{n}, \oplus\right)$ in which $\oplus$ is addition modulo $n$.

## 6. Define: $\left(U_{n}, \odot\right)$ (the multiplicative group of integers modulo $n$ )

Let $n$ be a prime natural number and let $U_{n}=\{1,2, \ldots, n-1\}$. The multiplicative group of integers modulo $n$ is the group $\left(U_{n}, \odot\right)$ in which $\odot$ is multiplication modulo $n$.
7. Prove: If $(G, *)$ is a group, and $a, b$ are any elements of $G$, then $(a * b)^{-1}=b^{-1} * a^{-1}$ pf/ Observe that:
$(a * b) *\left(b^{-1} * a^{-1}\right)=a *\left(b *\left(b^{-1} * a^{-1}\right)\right)=a *\left(\left(b * b^{-1}\right) * a^{-1}\right)=a *\left(e * a^{-1}\right)=$ $a * a^{-1}=e$
i.e., $(a * b) *\left(b^{-1} * a^{-1}\right)=e$,

Hence, $\left(b^{-1} * a^{-1}\right)=(a * b)^{-1}$
8. Define: The order of an element $x$ of a group $(G, *)$ (specify either additive or multiplicative notation.)

Given a group $(G, *)$, and an element $x \in G$, the order of the element $x$, denoted $o(x)$, is the least $n \in \mathbb{N}$ such that $n x=0$. (Additive notation) If no such $n$ exists, then $o(x)=\infty$.

Given a group $(G, *)$, and an element $x \in G$, the order of the element $x$, denoted $o(x)$, is the least $n \in \mathbb{N}$ such that $x^{n}=1$. (Multiplicative notation) If no such $n$ exists, then $o(x)=\infty$.
9. Prove: The identity element $e$ in a group $(G, *)$ is unique.

Remark: We will show that the identity element is unique by assuming that there are (at least) two identity elements in the group and showing that these must be the same element.
$\mathbf{p f} /$ Suppose that there are two identity elements, $e$ and $e_{1}$ in $G$.
Observe: $e=e * e_{1}$ (because $e_{1}$ is an identity)
Also: $e * e_{1}=e_{1}$ (because $e$ is an identity)
$\Rightarrow e=e * e_{1}=e_{1}$
i.e., $e=e_{1}$
10. Construct the group table for $\left(U_{5}, \odot\right)$

In $\left(U_{5}, \odot\right)$, the operation $\odot$ is multiplication modulo 5
$U_{5}=\{1,2,3,4\}$

| $\odot$ | 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 2 | 3 | 4 |
| 2 | 2 | 4 | 1 | 3 |
| 3 | 3 | 1 | 4 | 2 |
| 4 | 4 | 3 | 2 | 1 |

11. In the previous exercise, determine the order of the element 3

The operator in the group is multiplicative.
Therefore, $o(3)$ is the least natural number $n$ such that $3^{n} \equiv 1(\bmod ) 5$
(i.e., the least natural number $n$ such that $3^{n}$ is congruent to the identity)
$3^{1}=3 \equiv 3(\bmod ) 5$
$3^{2}=9 \equiv 4(\bmod ) 5$
$3^{3}=27 \equiv 2(\bmod ) 5$
$3^{4}=81 \equiv 1(\bmod ) 5$
$o(3)=4$
12. Construct the group table for $\left(\mathbb{Z}_{6}, \oplus\right)$

In $\left(\mathbb{Z}_{6}, \oplus\right)$, the operation $\oplus$ is addition modulo 6
$\mathbb{Z}_{6}=\{0,1,2,3,4,5\}$

| $\oplus$ | 0 | 1 | 2 | 3 | 4 | 5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 1 | 2 | 3 | 4 | 5 |
| 1 | 1 | 2 | 3 | 4 | 5 | 0 |
| 2 | 2 | 3 | 4 | 5 | 0 | 1 |
| 3 | 3 | 4 | 5 | 0 | 1 | 2 |
| 4 | 4 | 5 | 0 | 1 | 2 | 3 |
| 5 | 5 | 0 | 1 | 2 | 3 | 4 |

13. In the previous exercise, determine the order of the element 4

The operator in the group is additive.
Therefore, $o(4)$ is the least natural number $n$ such that $n 4 \equiv 0(\bmod ) 6$
(i.e., the least natural number $n$ such that $n 4$ is congruent to the identity)
$1 \cdot 4=4 \equiv 4(\bmod ) 6$
$2 \cdot 4=8 \equiv 2(\bmod ) 6$
$3 \cdot 4=12 \equiv 0(\bmod ) 6$
$o(4)=3$
14. Determine whether the operation $*$, given by $a * b=a b^{2}$ is an associative binary operation on the set $\mathbb{R}$.

Observe: $*$, as defined above, IS a binary operation on $\mathbb{R}$. For all $a, b \in \mathbb{R}, a b^{2} \in \mathbb{R}$ also.
(i.e., $\forall a, b \in \mathbb{R}, *$ assigns the real number $a b^{2}$ to the ordered pair $(a, b)$. )

Is $*$ an associative binary operation on $\mathbb{R}$ ?
Observe: $(a * b) * c=\left(a b^{2}\right) * c=a b^{2} c^{2}$
Also: $a *(b * c)=a *\left(b c^{2}\right)=a\left(b c^{2}\right)^{2}=a b^{2} c^{4}$
It appears that $(a * b) * c=a b^{2} c^{2} \neq a b^{2} c^{4}=a *(b * c)$
To prove this conclusively, we exhibit a counter-example:
Consider $a=1, b=1, c=2$
$(a * b) * c=a b^{2} c^{2}=1 \cdot 1^{2} \cdot 2^{2}=4$
$a *(b * c)=a b^{2} c^{4}=1 \cdot 1^{2} \cdot 2^{4}=16$
Thus, for $a=1, b=1, c=2,(a * b) * c \neq a *(b * c)$
Thus, * is NOT associative.
15. Fill out the group table below:

| $*$ | $e$ | $a$ | $b$ | $c$ |
| :---: | :---: | :---: | :---: | :---: |
| $e$ |  |  |  |  |
| $a$ |  |  |  |  |
| $b$ |  |  |  |  |
| $c$ |  |  |  |  |

There are a number of possibilities. Here are a few:

| * | $e$ | $a$ | $b$ | $c$ | * | $e$ | $a$ | $b$ | $c$ | * | $e$ | $a$ | $b$ | $c$ | * | $e$ | $a$ | $b$ | $c$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $e$ | $e$ | $a$ | $b$ | c | $e$ | $e$ | $a$ | $b$ | c | $e$ | $e$ | $a$ | $b$ | c | $e$ | $e$ | $a$ | $b$ | $c$ |
| $a$ | $a$ | $b$ | $c$ | $e$ | $a$ | $a$ | c | $e$ | $b$ | $a$ | $a$ | $e$ | c | $b$ | $a$ | $a$ | $b$ | $c$ | $e$ |
| $b$ | $b$ | $c$ | $e$ | $a$ | $b$ | $b$ | $e$ | $c$ | $a$ | $b$ | $b$ | $c$ | $a$ | $e$ | $b$ | $b$ | c | $e$ | $a$ |
| $c$ | c | $e$ | $a$ | $b$ | $c$ | c | $b$ | $a$ | $e$ | $c$ | c | $b$ | $e$ | $a$ | $c$ | c | $e$ | $a$ | $b$ |


| $*$ | $e$ | $a$ | $b$ | $c$ |
| :---: | :---: | :---: | :---: | :---: |
| $e$ | $e$ | $a$ | $b$ | $c$ |
| $a$ | $a$ | $e$ | $c$ | $b$ |
| $b$ | $b$ | $c$ | $e$ | $a$ |
| $c$ | $c$ | $b$ | $a$ | $e$ |

