Mth 123 Test #1 - Solutions

Fall 1996

Pat Rossi

Name _

Instructions. Show clearly how you arrive at your answers.

- 1. Compute: $\lim_{x\to 2} \frac{x^3 2x^2 + 2}{x^3 + 3} =$
 - (a) 1. Try plugging in:

$$\lim_{x \to 2} \frac{x^3 - 2x^2 + 2}{x^3 + 3} = \frac{2^3 - 2(2)^2 + 2}{2^3 + 3} = \frac{2}{11}$$

i.e.,
$$\lim_{x \to 2} \frac{x^3 - 2x^2 + 2}{x^3 + 3} = \frac{2}{11}$$

- 2. Compute: $\lim_{x\to 2} \frac{x^2-4}{x^2+2x-8} =$
 - (a) 1. Try plugging in:

$$\lim_{x \to 2} \frac{x^2 - 4}{x^2 + 2x - 8} = \frac{2^2 - 4}{2^2 + 2(2) - 8} = \frac{0}{0} \qquad \text{No Good!}$$
 Zero Divide

- 2. Try factoring out the "zero factor" from top and bottom: $\lim_{x \to 2} \frac{x^2 - 4}{x^2 + 2x - 8} = \lim_{x \to 2} \frac{(x+2)(x-2)}{(x+4)(x-2)} = \lim_{x \to 2} \frac{(x+2)}{(x+4)} \underbrace{=}_{\text{NOW plug in!}} \frac{((2)+2)}{((2)+4)} = \frac{2}{3}$ i.e., $\lim_{x \to 2} \frac{x^2 - 4}{x^2 + 2x - 8} = \frac{2}{3}$
- 3. Compute: $\lim_{x\to 0} \frac{\sqrt{3+x}-\sqrt{3}}{x} =$
 - (a) 1. Try plugging in:

$$\lim_{x \to 0} \frac{\sqrt{3+x} - \sqrt{3}}{x} = \frac{\sqrt{3+0} - \sqrt{3}}{0} = \frac{0}{0} \qquad \text{No Good!}$$
 Zero Divide

2. Try factoring out the "zero factor" from top and bottom:

$$\lim_{x \to 0} \frac{\sqrt{3+x} - \sqrt{3}}{x} = \lim_{x \to 0} \frac{\sqrt{3+x} - \sqrt{3}}{x} \cdot \frac{\sqrt{3+x} + \sqrt{3}}{\sqrt{3+x} + \sqrt{3}} = \lim_{x \to 0} \frac{\left(\sqrt{3+x}\right)^2 - \left(\sqrt{3}\right)^2}{x\left(\sqrt{3+x} + \sqrt{3}\right)}$$
$$= \lim_{x \to 0} \frac{3+x-3}{x\left(\sqrt{3+x} + \sqrt{3}\right)} = \lim_{x \to 0} \frac{x}{x\left(\sqrt{3+x} + \sqrt{3}\right)}$$
$$= \lim_{x \to 0} \frac{1}{\left(\sqrt{3+x} + \sqrt{3}\right)} \underbrace{=}_{\text{NOW plug in!}} \frac{1}{\left(\sqrt{3+0} + \sqrt{3}\right)} = \frac{1}{2\sqrt{3}} = \frac{\sqrt{3}}{6}$$
$$\text{i.e., } \lim_{x \to 0} \frac{\sqrt{3+x} - \sqrt{3}}{x} = \frac{1}{2\sqrt{3}} = \frac{\sqrt{3}}{6}$$

4. $\lim_{x\to\infty} \frac{2x^3 - 3x + 4}{6x^3 - 6x^2 + 5x - 2} =$

Observe: as $x \to \infty$, the terms of highest degree dominate the numerator and denominator. Consequently,

$$\lim_{x \to \infty} \frac{2x^3 - 3x + 4}{6x^3 - 6x^2 + 5x - 2} = \lim_{x \to \infty} \frac{2x^3}{6x^3} = \lim_{x \to \infty} \frac{1}{3} = \frac{1}{3}$$

i.e.,
$$\lim_{x \to \infty} \frac{2x^3 - 3x + 4}{6x^3 - 6x^2 + 5x - 2} = \frac{1}{3}$$

5. Find asymptotes and graph: $f(x) = \frac{2x+5}{x-3}$

Verticals: Look for x values that cause division by zero.

We have division by zero, exactly when x - 3 = 0

$$\Rightarrow x = 3$$

Next, we examine the one-sided limits at x = 3.

$$\lim_{x \to 3^{-}} \frac{2x+5}{x-3} = \frac{11}{-\varepsilon} = -\infty$$

$$x \to 3^{-}$$

$$\Rightarrow \qquad x < 3$$

$$\Rightarrow \qquad x - 3 < 0$$

$$\lim_{x \to 3^{+}} \frac{2x+5}{x-3} = \frac{11}{\varepsilon} = +\infty$$

$$x \to 3^{+}$$

$$\Rightarrow \qquad x > 3$$

$$\Rightarrow \qquad x - 3 > 0$$
i.e.,
$$\lim_{x \to 3^{-}} \frac{2x+5}{x-3} = -\infty \leftarrow$$
Infinite limits tell us that
$$x = 3 \text{ IS a vertical asymptote}$$
and
$$\lim_{x \to 3^{+}} \frac{2x+5}{z-3} = +\infty$$

and $\lim_{x \to 3^+} \frac{2x+5}{x-3} = +\infty$

Horizontals: Compute limits as $x \to \pm \infty$

Observe: as $x \to \infty$, the terms of highest degree dominate the numerator and denominator. Consequently,

$$\lim_{x \to -\infty} \frac{2x+5}{x-3} = \lim_{x \to -\infty} \frac{2x}{x} = \lim_{x \to -\infty} 2 = 2$$
$$\lim_{x \to +\infty} \frac{2x+5}{x-3} = \lim_{x \to +\infty} \frac{2x}{x} = \lim_{x \to +\infty} 2 = 2$$

i.e.,
$$\lim_{x \to -\infty} \frac{2x+5}{x-3} = 2 \leftarrow$$

Finite limits tell us that
 $x = 2$ IS a horizontal asymptote
 $\lim_{x \to +\infty} \frac{2x+5}{x-3} = 2$
Graph: $f(x) = \frac{2x+5}{x-3}$

6. $\lim_{x \to -\infty} \frac{3x^3 + 2x + 5}{9x^2 + 4x - 2} =$

Observe: as $x \to -\infty$, the terms of highest degree dominate the numerator and denominator. Consequently,

$$\lim_{x \to -\infty} \frac{3x^3 + 2x + 5}{9x^2 + 4x - 2} = \lim_{x \to -\infty} \frac{3x^3}{9x^2} = \lim_{x \to -\infty} \frac{x}{3} = -\infty$$

i.e.,
$$\lim_{x \to -\infty} \frac{3x^3 + 2x + 5}{9x^2 + 4x - 2} = -\infty$$

7. $\lim_{x \to 2} \frac{x^2 + 1}{x^2 - x - 2} =$

(a) 1. Try plugging in:

$$\lim_{x \to 2} \frac{x^2 + 1}{x^2 - x - 2} = \frac{2^2 + 1}{2^2 - 2 - 2} = \frac{5}{0} \qquad \text{No Good!}$$
 Zero Divide

2. Try factoring out the "zero factor" from top and bottom: Since step #1 didn't yield an expression of the form: $\frac{0}{0}$, step #2 won't work. 3. Examnine the one sided limits, as $x\to 2$

$$\lim_{x \to 2^{-}} \frac{x^{2}+1}{x^{2}-x-2} = \lim_{x \to 2^{-}} \frac{x^{2}+1}{(x+1)(x-2)} = \frac{5}{(3)(-\varepsilon)} = \frac{\left(\frac{5}{3}\right)}{-\varepsilon} = -\infty$$

$$x \to 2^{-}$$

$$\Rightarrow \qquad x < 2$$

$$\Rightarrow \qquad x - 2 < 0$$

$$\lim_{x \to 2^{+}} \frac{x^{2}+1}{x^{2}-x-2} = \lim_{x \to 2^{+}} \frac{x^{2}+1}{(x+1)(x-2)} = \frac{5}{(3)\varepsilon} = \frac{\left(\frac{5}{3}\right)}{\varepsilon} = +\infty$$

$$x \to 2^{+}$$

$$\Rightarrow \qquad x > 2$$

$$\Rightarrow \qquad x - 2 > 0$$
i.e.,
$$\lim_{x \to 2^{-}} \frac{x^{2}+1}{x^{2}-x-2} = -\infty \leftarrow$$
Since the one-sided limits

and
$$\lim_{x\to 2^+} \frac{x^2+1}{x^2-x-2} = +\infty$$

Since the one-sided limits are not equal, the limit DOES NOT EXIST.

x =	f(x)		
4.000	-3.5		
4.500	-35.1		
4.900	-351.2		
4.990	-3512.3		
4.999	-35123.0		

x =	f(x)
6.000	-3.5
5.500	-35.1
5.100	-351.2
5.010	-3512.3
5.001	-35123.0

determine:

(a) $\lim_{x \to 5^{-}} f(x) =$

Note that as $x \to 5^-$ (in the first table), f(x) is negative, and becomes "large without bound." Hence:

$$\lim_{x \to 5^{-}} f(x) = -\infty$$

(b) $\lim_{x \to 5^+} f(x) =$

Note that as $x \to 5^+$ (in the second table), f(x) is negative, and becomes "large without bound." Hence:

$$\lim_{x \to 5^+} f(x) = -\infty$$

(c) Sketch a rough graph of f(x).

9. Given:

x =	f(x)	x =	f(x)
-10.0	-1.5601	10.0	-0.4399
-100.0	-1.1311	100.0	-0.8689
-1,000.0	-1.0132	1,000.0	-0.9868
-10,000.0	-1.0012	10,000.0	-0.9988
-100,000.0	-1.0002	100,000.0	-0.9998

determine:

(a) $\lim_{x \to -\infty} f(x) =$

Note that as $x \to -\infty$ (in the first table), f(x) approaches -1^{-} . Hence:

$$\lim_{x \to -\infty} f\left(x\right) = -1$$

(b) $\lim_{x \to +\infty} f(x) =$

Note that as $x \to \infty$ (in the second table), f(x) approaches -1^+ . Hence:

$$\lim_{x \to \infty} f(x) = -1$$

(c) Sketch a rough graph of f(x).

