Mth 123 Test \#1 - Solutions

Fall 1996
Pat Rossi
Name \qquad

Instructions. Show clearly how you arrive at your answers.

1. Compute: $\lim _{x \rightarrow 2} \frac{x^{3}-2 x^{2}+2}{x^{3}+3}=$
(a) 1. Try plugging in:

$$
\begin{aligned}
& \lim _{x \rightarrow 2} \frac{x^{3}-2 x^{2}+2}{x^{3}+3}=\frac{2^{3}-2(2)^{2}+2}{2^{3}+3}=\frac{2}{11} \\
& \text { i.e., } \lim _{x \rightarrow 2} \frac{x^{3}-2 x^{2}+2}{x^{3}+3}=\frac{2}{11}
\end{aligned}
$$

2. Compute: $\lim _{x \rightarrow 2} \frac{x^{2}-4}{x^{2}+2 x-8}=$
(a) 1. Try plugging in:

$$
\lim _{x \rightarrow 2} \frac{x^{2}-4}{x^{2}+2 x-8}=\frac{2^{2}-4}{2^{2}+2(2)-8}=\frac{0}{0} \quad \begin{aligned}
& \text { No Good! } \\
& \text { Zero Divide }
\end{aligned}
$$

2. Try factoring out the "zero factor" from top and bottom:

$$
\begin{aligned}
& \lim _{x \rightarrow 2} \frac{x^{2}-4}{x^{2}+2 x-8}=\lim _{x \rightarrow 2} \frac{(x+2)(x-2)}{(x+4)(x-2)}=\lim _{x \rightarrow 2} \frac{(x+2)}{(x+4)} \underbrace{=}_{\text {NOW plug in! }} \frac{((2)+2)}{((2)+4)}=\frac{2}{3} \\
& \text { i.e., } \lim _{x \rightarrow 2} \frac{x^{2}-4}{x^{2}+2 x-8}=\frac{2}{3}
\end{aligned}
$$

3. Compute: $\lim _{x \rightarrow 0} \frac{\sqrt{3+x}-\sqrt{3}}{x}=$
(a) 1. Try plugging in:

$$
\begin{array}{ll}
\lim _{x \rightarrow 0} \frac{\sqrt{3+x}-\sqrt{3}}{x}=\frac{\sqrt{3+0}-\sqrt{3}}{0}=\frac{0}{0} & \text { No Good! } \\
\text { Zero Divide }
\end{array}
$$

2. Try factoring out the "zero factor" from top and bottom:

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{\sqrt{3+x}-\sqrt{3}}{x}=\lim _{x \rightarrow 0} \frac{\sqrt{3+x}-\sqrt{3}}{x} \cdot \frac{\sqrt{3+x}+\sqrt{3}}{\sqrt{3+x}+\sqrt{3}}=\lim _{x \rightarrow 0} \frac{(\sqrt{3+x})^{2}-(\sqrt{3})^{2}}{x(\sqrt{3+x}+\sqrt{3})} \\
& =\lim _{x \rightarrow 0} \frac{3+x-3}{x(\sqrt{3+x}+\sqrt{3})}=\lim _{x \rightarrow 0} \frac{x}{x(\sqrt{3+x}+\sqrt{3})} \\
& =\lim _{x \rightarrow 0} \frac{1}{(\sqrt{3+x}+\sqrt{3})} \underbrace{=}_{\text {NOW plug in! }} \frac{1}{(\sqrt{3+0}+\sqrt{3})}=\frac{1}{2 \sqrt{3}}=\frac{\sqrt{3}}{6} \\
& \text { i.e., } \lim _{x \rightarrow 0} \frac{\sqrt{3+x}-\sqrt{3}}{x}=\frac{1}{2 \sqrt{3}}=\frac{\sqrt{3}}{6}
\end{aligned}
$$

4. $\lim _{x \rightarrow \infty} \frac{2 x^{3}-3 x+4}{6 x^{3}-6 x^{2}+5 x-2}=$

Observe: as $x \rightarrow \infty$, the terms of highest degree dominate the numerator and denominator. Consequently,
$\lim _{x \rightarrow \infty} \frac{2 x^{3}-3 x+4}{6 x^{3}-6 x^{2}+5 x-2}=\lim _{x \rightarrow \infty} \frac{2 x^{3}}{6 x^{3}}=\lim _{x \rightarrow \infty} \frac{1}{3}=\frac{1}{3}$
i.e., $\lim _{x \rightarrow \infty} \frac{2 x^{3}-3 x+4}{6 x^{3}-6 x^{2}+5 x-2}=\frac{1}{3}$
5. Find asymptotes and graph: $f(x)=\frac{2 x+5}{x-3}$

Verticals: Look for x values that cause division by zero.
We have division by zero, exactly when $x-3=0$
$\Rightarrow x=3$
Next, we examine the one-sided limits at $x=3$.

$$
\begin{gathered}
\lim _{x \rightarrow 3^{-}} \frac{2 x+5}{x-3}=\frac{11}{-\varepsilon}=-\infty \\
x \rightarrow 3^{-} \\
\Rightarrow \\
\Rightarrow \quad x<3 \\
\Rightarrow \quad x-3<0 \\
\lim _{x \rightarrow 3^{+}} \frac{2 x+5}{x-3}=\frac{11}{\varepsilon}=+\infty \\
x \rightarrow 3^{+} \\
\Rightarrow
\end{gathered}
$$

i.e., $\lim _{x \rightarrow 3^{-}} \frac{2 x+5}{x-3}=-\infty \leftarrow$

> Infinite limits tell us that $x=3$ IS a vertical asymptote
and $\lim _{x \rightarrow 3^{+}} \frac{2 x+5}{x-3}=+\infty$
Horizontals: Compute limits as $x \rightarrow \pm \infty$
Observe: as $x \rightarrow \infty$, the terms of highest degree dominate the numerator and denominator. Consequently,
$\lim _{x \rightarrow-\infty} \frac{2 x+5}{x-3}=\lim _{x \rightarrow-\infty} \frac{2 x}{x}=\lim _{x \rightarrow-\infty} 2=2$
$\lim _{x \rightarrow+\infty} \frac{2 x+5}{x-3}=\lim _{x \rightarrow+\infty} \frac{2 x}{x}=\lim _{x \rightarrow+\infty} 2=2$
i.e., $\lim _{x \rightarrow-\infty} \frac{2 x+5}{x-3}=2 \leftarrow$

Finite limits tell us that $x=2$ IS a horizontal asymptote
$\lim _{x \rightarrow+\infty} \frac{2 x+5}{x-3}=2$
Graph: $f(x)=\frac{2 x+5}{x-3}$

6. $\lim _{x \rightarrow-\infty} \frac{3 x^{3}+2 x+5}{9 x^{2}+4 x-2}=$

Observe: as $x \rightarrow-\infty$, the terms of highest degree dominate the numerator and denominator. Consequently,
$\lim _{x \rightarrow-\infty} \frac{3 x^{3}+2 x+5}{9 x^{2}+4 x-2}=\lim _{x \rightarrow-\infty} \frac{3 x^{3}}{9 x^{2}}=\lim _{x \rightarrow-\infty} \frac{x}{3}=-\infty$
i.e., $\lim _{x \rightarrow-\infty} \frac{3 x^{3}+2 x+5}{9 x^{2}+4 x-2}=-\infty$
7. $\lim _{x \rightarrow 2} \frac{x^{2}+1}{x^{2}-x-2}=$
(a) 1. Try plugging in:

$$
\lim _{x \rightarrow 2} \frac{x^{2}+1}{x^{2}-x-2}=\frac{2^{2}+1}{2^{2}-2-2}=\frac{5}{0} \quad \begin{aligned}
& \text { No Good! } \\
& \text { Zero Divide }
\end{aligned}
$$

2. Try factoring out the "zero factor" from top and bottom:

Since step $\# 1$ didn't yield an expression of the form: $\frac{0}{0}$, step $\# 2$ won't work.
3. Examnine the one sided limits, as $x \rightarrow 2$

$$
\begin{aligned}
& \lim _{x \rightarrow 2^{-}} \frac{x^{2}+1}{x^{2}-x-2}=\lim _{x \rightarrow 2^{-}} \frac{x^{2}+1}{(x+1)(x-2)}=\frac{5}{(3)(-\varepsilon)}=\frac{\left(\frac{5}{3}\right)}{-\varepsilon}=-\infty \\
& \quad x \rightarrow 2^{-} \\
& \quad \Rightarrow \quad x<2 \\
& \quad \Rightarrow \quad x-2<0 \\
& \lim _{x \rightarrow 2^{+}} \frac{x^{2}+1}{x^{2}-x-2}=\lim _{x \rightarrow 2^{+}} \frac{x^{2}+1}{(x+1)(x-2)}=\frac{5}{(3) \varepsilon}=\frac{\left(\frac{5}{3}\right)}{\varepsilon}=+\infty \\
& \quad x \rightarrow 2^{+} \\
& \quad \Rightarrow \quad x>2 \\
& \quad \Rightarrow \quad x-2>0
\end{aligned}
$$

i.e., $\lim _{x \rightarrow 2^{-}} \frac{x^{2}+1}{x^{2}-x-2}=-\infty \leftarrow$

Since the one-sided limits are not equal,
and $\lim _{x \rightarrow 2^{+}} \frac{x^{2}+1}{x^{2}-x-2}=+\infty$
the limit DOES NOT EXIST.

(c) Sketch a rough graph of $f(x)$.

9. Given:

$x=$	$f(x)$
-10.0	-1.5601
-100.0	-1.1311
$-1,000.0$	-1.0132
$-10,000.0$	-1.0012
$-100,000.0$	-1.0002

$x=$	$f(x)$
10.0	-0.4399
100.0	-0.8689
$1,000.0$	-0.9868
$10,000.0$	-0.9988
$100,000.0$	-0.9998

determine:
(a) $\lim _{x \rightarrow-\infty} f(x)=$

Note that as $x \rightarrow-\infty$ (in the first table), $f(x)$ approaches -1^{-}. Hence:

$$
\lim _{x \rightarrow-\infty} f(x)=-1
$$

(b) $\lim _{x \rightarrow+\infty} f(x)=$

Note that as $x \rightarrow \infty$ (in the second table), $f(x)$ approaches -1^{+}. Hence:

$$
\lim _{x \rightarrow \infty} f(x)=-1
$$

(c) Sketch a rough graph of $f(x)$.

