Solutions to Selected Exercises on p. 28

Summer 2024

Pat Rossi
Name \qquad
3a Express the fraction $\frac{1}{6}$ in sexagesimal notation
Our aim is to express $\frac{1}{6}$ as the sum of powers of 60
We want x such that $\frac{1}{6}=\frac{x}{60}$
Therefore, we must express $\frac{1}{6}$ as a fraction with a denominator of 60 .
Observe: $\frac{1}{6}=\frac{1}{6} \cdot \underbrace{\frac{10}{10}}_{=1}=\frac{10}{60}=0 ; 10$
i.e., $\frac{1}{6}=0 ; 10$
(Ex 3 b is on the next page)

3b Express the fraction $\frac{1}{9}$ in sexagesimal notation
Our aim is to express $\frac{1}{9}$ as the sum of powers of 60
We want x such that $\frac{1}{9}=\frac{x}{60}$; or $\frac{1}{9}=\frac{x}{60}+\frac{y}{60^{2}}$; etc.
Observe: $\frac{1}{9}=\frac{1}{3^{2}}$ is a fraction in "reduced form" (numerator and denominator have no prime factors in common).

Since 60 only has one factor of $3\left(60=2^{2} \cdot 3 \cdot 5\right)$ and 9 has two factors of $3\left(9=3^{2}\right)$, the (reduced) fraction $\frac{1}{9}$ cannot be expressed solely as a single fraction with denominator 60.
i.e. There is no whole number x such that $\frac{1}{9}=\frac{x}{60}$.

Therefore, we must express $\frac{1}{9}$ as the sum of two or more fractions whose denominators are powers of 60 .

If we factor the denominators 9 and 60, and compare, here's what we see:
$9=3^{2} ;$ and $60=2^{2} \cdot 3 \cdot 5$
9 has a factor of 3 that 60 doesn't have and 60 has factors 2^{2} and 5 that 9 doesn't have.

Therefore, in order to express $\frac{1}{9}$ as fraction whose denominator is a power of 60 , that power of 60 must contain all factors of 9 .

Observe that $60^{2}=\left(2^{2} \cdot 3 \cdot 5\right)^{2}=2^{4} \cdot 3^{2} \cdot 5^{2}$ contains all factors of 9 .
Therefore, we can express $\frac{1}{9}$ as a fraction with denominator of 60^{2} by multiplying numerator and denominator of $\frac{1}{9}$ by those factors of 60^{2} that are not factors of 9 .
i.e., $\frac{1}{9}=\frac{1}{9} \cdot \frac{2^{4} \cdot 5^{2}}{2^{4} \cdot 5^{2}}=\frac{2^{4} \cdot 5^{2}}{9 \cdot 2^{4} \cdot 5^{2}}=\frac{400}{3600}=\frac{400}{60^{2}}$
i.e., $\frac{1}{9}=\frac{400}{60^{2}}$

We should now express the numerator as the sum of powers of 60 , each with a coefficient less than or equal to 60 (because we will be expressing the number in base 60).
i.e., $\frac{1}{9}=\frac{400}{60^{2}}=\frac{6 \cdot 60+40}{60^{2}}=\frac{6 \cdot 60}{60^{2}}+\frac{40}{60^{2}}=\frac{6}{60}+\frac{40}{60^{2}}=0 ; 6,40$
i.e., $\frac{1}{9}=0 ; 6,40$

3c Express the fraction $\frac{1}{5}$ in sexagesimal notation
Our aim is to express $\frac{1}{5}$ as the sum of powers of 60
We want x such that $\frac{1}{5}=\frac{x}{60}$
Therefore, we must express $\frac{1}{5}$ as a fraction with a denominator of 60 .
Observe: $\frac{1}{5}=\frac{1}{5} \cdot \underbrace{\frac{12}{12}}_{=1}=\frac{12}{60}=0 ; 12$
i.e., $\frac{1}{5}=0 ; 12$
(Ex 3 d is on the next page)

3d Express the fraction $\frac{1}{24}$ in sexagesimal notation
Our aim is to express $\frac{1}{24}$ as the sum of powers of 60
We want x such that $\frac{1}{24}=\frac{x}{60}$; or $\frac{1}{24}=\frac{x}{60}+\frac{y}{60^{2}}$; etc.
Observe: $\frac{1}{24}=\frac{1}{2^{3} \cdot 3}$ is a fraction in "reduced form" (numerator and denominator have no prime factors in common).

Since 60 only has two factors of $2\left(60=2^{2} \cdot 3 \cdot 5\right)$ and 24 has three factors of 2 $\left(24=2^{3} \cdot 3\right)$, the (reduced) fraction $\frac{1}{24}$ cannot be expressed solely as a single fraction with denominator 60 .
i.e. There is no whole number x such that $\frac{1}{24}=\frac{x}{60}$.

Therefore, we must express $\frac{1}{24}$ as the sum of two or more fractions whose denominators are powers of 60 .

If we factor the denominators 24 and 60, and compare, here's what we see:
$24=2^{3} \cdot 3 ;$ and $60=2^{2} \cdot 3 \cdot 5$
24 has a factor of 2 that 60 doesn't have and 60 has a factor of 5 that 24 doesn't have.
Therefore, in order to express $\frac{1}{24}$ as fraction whose denominator is a power of 60 , that power of 60 must contain all factors of 24 .

Observe that $60^{2}=\left(2^{2} \cdot 3 \cdot 5\right)^{2}=2^{4} \cdot 3^{2} \cdot 5^{2}$ contains all factors of 24.
Therefore, we can express $\frac{1}{24}$ as a fraction with denominator of 60^{2} by multiplying numerator and denominator of $\frac{1}{24}$ by those factors of 60^{2} that are not factors of 24 .
i.e., $\frac{1}{24}=\frac{1}{24} \cdot \frac{2 \cdot 3 \cdot 5^{2}}{2 \cdot 3 \cdot 5^{2}}=\frac{2 \cdot 3 \cdot 5^{2}}{24 \cdot 2 \cdot 3 \cdot 5^{2}}=\frac{150}{3600}=\frac{150}{60^{2}}$
i.e., $\frac{1}{24}=\frac{150}{60^{2}}$

We should now express the numerator as the sum of powers of 60, each with a coefficient less than or equal to 60 (because we will be expressing the number in base 60).
i.e., $\frac{1}{24}=\frac{150}{60^{2}}=\frac{2 \cdot 60+30}{60^{2}}=\frac{2 \cdot 60}{60^{2}}+\frac{30}{60^{2}}=\frac{2}{60}+\frac{30}{60^{2}}=0 ; 2,30$
i.e., $\frac{1}{24}=0 ; 2,30$

3e Express the fraction $\frac{1}{40}$ in sexagesimal notation
Our aim is to express $\frac{1}{40}$ as the sum of powers of 60
We want x such that $\frac{1}{40}=\frac{x}{60}$; or $\frac{1}{40}=\frac{x}{60}+\frac{y}{60^{2}}$; etc.
Observe: $\frac{1}{40}=\frac{1}{2^{3} .5}$ is a fraction in "reduced form" (numerator and denominator have no prime factors in common).

Since 60 only has two factors of $2\left(60=2^{2} \cdot 3 \cdot 5\right)$ and 40 has three factors of 2 $\left(40=2^{3} \cdot 5\right)$, the (reduced) fraction $\frac{1}{40}$ cannot be expressed solely as a single fraction with denominator 60 .
i.e. There is no whole number x such that $\frac{1}{40}=\frac{x}{60}$.

Therefore, we must express $\frac{1}{40}$ as the sum of two or more fractions whose denominators are powers of 60 .

If we factor the denominators 40 and 60 , and compare, here's what we see:
$40=2^{3} \cdot 5 ;$ and $60=2^{2} \cdot 3 \cdot 5$
40 has a factor of 2 that 60 doesn't have and 60 has a factor of 3 that 40 doesn't have.
Therefore, in order to express $\frac{1}{40}$ as fraction whose denominator is a power of 60 , that power of 60 must contain all factors of 40 .

Observe that $60^{2}=\left(2^{2} \cdot 3 \cdot 5\right)^{2}=2^{4} \cdot 3^{2} \cdot 5^{2}$ contains all factors of 40 .
Therefore, we can express $\frac{1}{40}$ as a fraction with denominator of 60^{2} by multiplying numerator and denominator of $\frac{1}{40}$ by those factors of 60^{2} that are not factors of 40 .
i.e., $\frac{1}{40}=\frac{1}{40} \cdot \frac{2 \cdot 3^{2} \cdot 5}{2 \cdot 3^{2} \cdot 5}=\frac{2 \cdot 3^{2} \cdot 5}{40 \cdot 2 \cdot 3^{2} \cdot 5}=\frac{90}{3600}=\frac{90}{60^{2}}$
i.e., $\frac{1}{40}=\frac{90}{60^{2}}$

We should now express the numerator as the sum of powers of 60 , each with a coefficient less than or equal to 60 (because we will be expressing the number in base 60).
i.e., $\frac{1}{40}=\frac{90}{60^{2}}=\frac{1 \cdot 60+30}{60^{2}}=\frac{1 \cdot 60}{60^{2}}+\frac{30}{60^{2}}=\frac{1}{60}+\frac{30}{60^{2}}=0 ; 1,30$
i.e., $\frac{1}{40}=0 ; 1,30$

3f Express the fraction $\frac{5}{12}$ in sexagesimal notation
Our aim is to express $\frac{5}{12}$ as the sum of powers of 60
We want x such that $\frac{5}{12}=\frac{x}{60}$
Therefore, we must express $\frac{5}{12}$ as a fraction with a denominator of 60 .
Observe: $\frac{5}{12}=\frac{5}{12} \cdot \underbrace{\frac{5}{5}}_{=1}=\frac{25}{60}=0 ; 25$
i.e., $\frac{5}{12}=0 ; 25$
(Ex 4 a is on the next page)

4a Convert the number 1,23 , 45. from sexagesimal to "our system" (i.e., to decimal (base 10)).
$1,23,45 .=1 \cdot 60^{2}+23 \cdot 60+45=5,025$
i.e., $1,23,45 .=5,025$
(Ex 4 b is on the next page)

4b Convert the number 12; 3, 45 from sexagesimal to "our system" (i.e., to decimal (base 10)).
$12 ; 3,45=12 \cdot 60^{0}+3 \cdot \frac{1}{60}+45 \cdot \frac{1}{60^{2}}=12+\frac{3}{60}+\frac{45}{60^{2}}$
$=12+\frac{3}{3 \cdot 20}+\frac{45}{(3 \cdot 20)^{2}}$
Observe: Because we want to convert to base 10, we would like for the fractions $\frac{3}{2^{2.5}}$ and $\frac{45}{2^{4} \cdot 5^{2}}$ to be expressed as fractions whose denominators are powers of 10 .
Taking into consideration that the prime factorization of 10 is $10=2 \cdot 5$, we have:

$$
\begin{aligned}
& 12 ; 3,45=12+\frac{3}{3 \cdot 20}+\frac{45}{(3 \cdot 20)^{2}}=12+\frac{3}{3 \cdot 2^{2} \cdot 5}+\frac{45}{\left(3 \cdot 2^{2} \cdot 5\right)^{2}}=12+\frac{3}{3 \cdot 2^{2} \cdot 5}+\frac{3^{2} \cdot 5}{3^{2} \cdot 2^{4} \cdot 5^{2}} \\
& =12+\frac{1}{2^{2} \cdot 5}+\frac{5}{2^{4} \cdot 5^{2}}=12+\frac{1}{2^{2} \cdot 5} \cdot \frac{5}{5}+\frac{5}{2^{4} \cdot 5^{2}} \cdot \frac{5^{2}}{5^{2}}=12+\frac{5}{2^{2} \cdot 5^{2}}+\frac{125}{2^{4} \cdot 5^{4}} \\
& =12+\frac{5}{(2 \cdot 5)^{2}}+\frac{125}{(2 \cdot 5)^{4}}=12+\frac{5}{10^{2}}+\frac{125}{10^{4}}=12+\frac{5}{10^{2}}+\frac{100}{10^{4}}+\frac{25}{10^{4}} \\
& =12+\frac{5}{100}+\frac{1}{100}+\frac{25}{10^{4}}=12+\frac{6}{100}+\frac{25}{10^{4}}=12+\frac{6}{10^{2}}+\frac{2 \cdot 10+5}{10^{4}} \\
& =12+\frac{6}{10^{2}}+\frac{2 \cdot 10}{10^{4}}+\frac{5}{10^{4}}=12+\frac{6}{10^{2}}+\frac{2}{10^{3}}+\frac{5}{10^{4}}=12.0625
\end{aligned}
$$

Because we want to convert to base 10, we would like for the fractions $\frac{1}{2^{2} \cdot 5}$ and $\frac{5}{2^{4.5^{2}}}$ to be expressed as fractions whose denominators are powers of 10 (i.e. powers of $2 \cdot 5$).

Thus: $12 ; 3,45=12.0625$

$$
\text { i.e., } 12 ; 3,45=12.0625
$$

Alternatively:

$$
\begin{aligned}
& 12 ; 3,45=12+\frac{3}{60}+\frac{45}{60^{2}}=12+\frac{1}{20}+\frac{5}{20 \cdot 20}=12+\frac{1}{20}+\frac{1}{80} \\
& =12+\frac{4}{80}+\frac{1}{80}=12+\frac{5}{80}=12+\frac{1}{16} \\
& \text { i.e., } 12 ; 3,45=12+\frac{1}{16}
\end{aligned}
$$

Remark: Since the direction given stated: "Convert these numbers form sexagesimal notation to 'our system' (i.e. base 10), the former answer ($12 ; 3,45=12.0625$) is preferable.

4c Convert the number 0; 12, 3, 45 from sexagesimal to "our system" (i.e., to decimal (base 10)).

Observe: $0 ; 12,3,45=\frac{12}{60}+\frac{3}{60^{2}}+\frac{45}{60^{3}}$
(Eliminate, from the denominator, all prime factors that are not factors of 10)
$0 ; 12,3,45=\frac{12}{60}+\frac{3}{60^{2}}+\frac{45}{60^{3}}=\frac{2^{2} \cdot 3}{2^{2} \cdot 3 \cdot 5}+\frac{3}{\left(2^{2} \cdot 3 \cdot 5\right)^{2}}+\frac{3^{2} \cdot 5}{\left(2^{2} \cdot 3 \cdot 5\right)^{3}}$
$=\frac{2^{2} \cdot 3}{2^{2} \cdot 3 \cdot 5}+\frac{3}{2^{4} \cdot 3^{2} \cdot 5^{2}}+\frac{3^{2} \cdot 5}{2^{6} \cdot 3^{3} \cdot 5^{3}}=\frac{2^{2} \cdot 3}{2^{2} \cdot 3 \cdot 5}+\frac{3}{2^{4} \cdot 3^{2} \cdot 5^{2}}+\frac{3^{2} \cdot 5}{2^{6} \cdot 3^{3} \cdot 5^{3}}$
$=\frac{2^{2}}{2^{2} \cdot 5}+\frac{1}{2^{4} \cdot 3 \cdot 5^{2}}+\frac{5}{2^{6 \cdot 3 \cdot 5}}=\frac{2}{2 \cdot 5}+\frac{1}{2^{4} \cdot 3 \cdot 5^{2}}+\frac{1}{2^{6 \cdot 3 \cdot 5}}{ }^{2}$
OOPS! These fractions are "reduced to lowest terms" and 3 is a factor of two of the denominators. Since 3 is a prime factor that is not a factor of 10 , we will not be able to express these fractions in such a way that their denominators are powers of 10.
i.e., We won't be able to express $0 ; 12,3,45$ in "decimal form" in base 10 . The best that we'll be able to do is express $0 ; 12,3,45$ as a whole number in base 10 plus a fraction whose denominator is not a power of 10 .

Consequently, we proceed as follows:
$0 ; 12,3,45=\frac{12}{60}+\frac{3}{60^{2}}+\frac{45}{60^{3}}=\frac{12}{60} \frac{60^{2}}{60^{2}}+\frac{3}{60^{2}} \frac{60}{60}+\frac{45}{60^{3}}=\frac{12 \cdot 60^{2}+3 \cdot 60+45}{60^{3}}$
$=\frac{43425}{60^{3}}=\frac{3^{2} 5^{2} 193}{2^{6} 3^{3} 5^{3}}=\frac{193}{2^{6} \cdot 3 \cdot 5}=\frac{193}{960}$
i.e., $0 ; 12,3,45=\frac{193}{960}$

4d Convert the number 1, 23; 45 from sexagesimal to "our system" (i.e., to decimal (base 10)).

Observe:

1,$23 ; 45=1 \cdot 60+23+\frac{45}{60}=1 \cdot 60+23+\frac{3^{2} \cdot 5}{2^{2} \cdot 3 \cdot 5}=1 \cdot 60+23+\frac{3 \cdot 5}{2^{2} \cdot 5}$
$=83+\frac{3 \cdot 5}{2^{2 \cdot 5}}$
Observe also: Because we want to convert to base 10, we would like for the fraction $\frac{3 \cdot 5}{2^{2} \cdot 5}$ to be expressed as a fraction whose denominator is a power of 10 .

Taking into consideration the fact that the prime factorization of 10 is $10=2 \cdot 5$, we have:

1,$23 ; 45=83+\frac{3 \cdot 5}{2^{2} \cdot 5}=83+\frac{3 \cdot 5}{2^{2} \cdot 5} \cdot \frac{5}{5}=83+\frac{3 \cdot 5^{2}}{2^{2} \cdot 5^{2}}=83+\frac{3 \cdot 5^{2}}{(2 \cdot 5)^{2}}$
$=83+\frac{75}{10^{2}}=83.75$
i.e., 1,$23 ; 45=83.75$

Alternatively:

$$
\begin{aligned}
& 1,23 ; 45=1 \cdot 60+23+\frac{45}{60}=1 \cdot 60+23+\frac{3^{2} \cdot 5}{2^{2} \cdot \cdot \cdot 5}=1 \cdot 60+23+\frac{3}{2^{2}} \\
& =83 \frac{3}{4} \\
& \text { i.e., } 1,23 ; 45=83 \frac{3}{4}
\end{aligned}
$$

Remark: Since the direction given stated: "Convert these numbers form sexagesimal notation to 'our system' (i.e. base 10), the former answer $(1,23 ; 45=83.75)$ is preferable.

