MTH 3311 Test #2 - Solutions

 ${\rm Spring}\ 2023$

Pat Rossi

Name $_$

Instructions: Do any two of the exercises below for credit

- 1. Water at temperature 10° C takes 15 minutes to warm up to 20° C in a room at temperature 35° C
 - (a) Find the temperature after 20 minutes
 - (b) When will the temperature be 30° C?

Given a room at constant temperature T_r and a liquid at temperature T, the rate at which the temperature warms or cools $\frac{dT}{dt}$ is proportional to the difference in the room temperature T_r and the temperature of the liquid T. (Here, t represents time)

i.e., $\frac{dT}{dt} \propto (T_r - T)$

or $\frac{dT}{dt} = k (T_r - T)$, where k is the constant of proportionality.

Since this is a differential equation in the variable T, we can solve it for T. We can do this in at least two different ways.

First Way (Separate the Variables)

$$\frac{dT}{dt} = k \left(T_r - T\right)$$

$$\Rightarrow \frac{1}{(T_r - T)} dT = k dt$$

$$\Rightarrow \int \frac{1}{(T_r - T)} dT = \int k dt$$

$$u = T_r - T$$

$$\frac{du}{dT} = -1$$

$$du = -dT$$

$$-du = dT$$

$$\int \underbrace{\frac{1}{(T_r - T)}}_{\frac{1}{u}} \frac{dT}{-du} = \int \frac{1}{u} (-du) = -\int \frac{1}{u} du = -\ln|u| + C = -\ln|T_r - T| + C$$

 $= -\ln (T_r - T) + C_1$ (no absolute bars needed, since $T_r > T$)

Also: $\int kdt = kt + C_2$ Thus, $\int \frac{1}{(T_r - T)} dT = \int kdt \Rightarrow -\ln(T_r - T) + C_1 = kt + C_2$ or, $\ln(T_r - T) + C_1 = -kt + C_2$ $\Rightarrow \ln(T_r - T) = -kt + C_3$ $\Rightarrow e^{\ln(T_r - T)} = e^{-kt + C_3} = C_4 e^{-kt}$ i.e., $T_r - T = C_4 e^{-kt}$ $\Rightarrow -T = -T_r + C_4 e^{-kt}$ $T = T_r + C e^{-kt}$

Second Way (Use an Integrating Factor)

$$\frac{dT}{dt} = k \left(T_r - T\right)$$
$$\Rightarrow \frac{dT}{dt} = kT_r - kT$$
$$\Rightarrow \frac{dT}{dt} + \underbrace{k}_{P(t)}T = kT_r$$

Our integrating factor is $e^{\int P(t)dt} = e^{\int kdt} = e^{kt}$

$$\Rightarrow e^{kt} \frac{dT}{dt} + ke^{kt}T = kT_r e^{kt}$$

$$\Rightarrow \frac{d}{dt} \left[e^{kt}T \right] = kT_r e^{kt}$$

$$\Rightarrow \frac{d}{dt} \left[e^{kt}T \right] = kT_r e^{kt}$$

$$\Rightarrow \int \frac{d}{dt} \left[e^{kt}T \right] dt = kT_r \int e^{kt} dt$$

$$\Rightarrow e^{kt}T = kT_r \left[\frac{1}{k} e^{kt} \right] + C$$

$$\Rightarrow e^{kt}T = T_r e^{kt} + C$$

$$\Rightarrow T = T_r + C e^{-kt}$$

Next (Solve for the constants C and k)

Recall: When t = 0 minutes, $T = 10^{\circ}$ $\Rightarrow 10^{\circ} = 35^{\circ} + Ce^{-k(0 \text{ minutes})} = 35^{\circ} + C$ i.e., $10^{\circ} = 35^{\circ} + C$ i.e., $-25^{\circ} = C$ Thus, $T = T_r - 25^{\circ}e^{-kt}$ i.e., $T = 35^{\circ} - 25^{\circ}e^{-kt}$

Also Recall: When t = 15 minutes, $T = 20^{\circ}$

- $\Rightarrow 20^{\circ} = 35^{\circ} 25^{\circ} e^{-k(15 \text{ minutes})}$ $\Rightarrow -15^{\circ} = -25^{\circ} e^{-k(15 \text{ minutes})}$ $\Rightarrow \frac{-15^{\circ}}{-25^{\circ}} = e^{-k(15 \text{ minutes})}$ $\Rightarrow 0.6 = e^{-k(15 \text{ minutes})}$ $\Rightarrow \ln (0.6) = \ln \left(e^{-k(15 \text{ minutes})}\right) = -k (15 \text{ minutes})$ i.e., -0.51083 = -k (15 minutes)i.e., 0.51083 = k (15 minutes) $\Rightarrow \frac{0.51083}{15 \text{ minutes}} = k$ Thus $T = 35^{\circ} 25^{\circ} e^{-\frac{0.51083}{15 \text{ minutes}}t}$ $\Rightarrow T = 35^{\circ} 25^{\circ} e^{-\frac{0.51083}{15 \text{ minutes}}t}$
 - (a) Find the temperature after 20 minutes

 $T (20 \text{ minutes}) = 35^{\circ} - 25^{\circ} e^{-\frac{0.51083}{15 \text{ minutes}}(20 \text{ minutes})} = 22.349^{\circ}$ i.e., $T (20 \text{ minutes}) = 22.349^{\circ}$

(b) When will the temperature be 30° C?

$$T = 35^{\circ} - 25^{\circ} e^{-\frac{0.51083}{15 \text{ minutes}}t}$$

$$\Rightarrow 30^{\circ} = 35^{\circ} - 25^{\circ} e^{-\frac{0.51083}{15 \text{ minutes}}t}$$

$$\Rightarrow -5^{\circ} = -25^{\circ} e^{-\frac{0.51083}{15 \text{ minutes}}t}$$

$$\Rightarrow \frac{-5^{\circ}}{-25^{\circ}} = e^{-\frac{0.51083}{15 \text{ minutes}}t}$$

$$\Rightarrow 0.2 = e^{-\frac{0.51083}{15 \text{ minutes}}t}$$

$$\Rightarrow \ln (0.2) = \ln \left(e^{-\frac{0.51083}{15 \text{ minutes}}t}\right) = -\frac{0.51083}{15 \text{ minutes}}t$$

$$\Rightarrow \frac{\ln(0.2)}{\left(-\frac{0.51083}{15 \text{ minutes}}\right)} = t$$

$$\Rightarrow t = \frac{\ln(0.2)}{\left(-\frac{0.51083}{15}\right)} = 47.26 \text{ minutes}$$
i.e., $t = 47.26 \text{ minutes}$

- 2. A paratrooper and parachute weigh 240 lb. At the instant the parachute opens, he is traveling vertically downward at 40 $\frac{\text{ft}}{\text{sec}}$. If the air resistance varies directly as the instantaneous velocity, and the air resistance is 80 lb when the velocity is 20 $\frac{\text{ft}}{\text{sec}}$:
 - (a) Determine the velocity at any time t.
 - (b) Find the limiting velocity

First, we establish our conventions regarding direction:

Positive Direction \uparrow

We will start our stopwatch at the instant that the parachute opens.

Thus, $v(0 \text{ sec}) = -40 \frac{\text{ft}}{\text{sec}}$ (The velocity is negative because the motion is in the downward direction.)

Let R be the resistance due to air.

When $v = -20 \frac{\text{ft}}{\text{sec}}$, R = 80 lb (Because "For a velocity of $20 \frac{\text{ft}}{\text{sec}}$ (in the *negative* direction), ... air resis-

Also: "The force of air resistance is proportional to the velocity" i.e. $R \propto v$

 $\Rightarrow R = kv$, where k is the constant of proportionality.

For "future reference," we will find the constant of proportionality right now.

Recall: When
$$v = -20 \frac{\text{ft}}{\text{sec}}$$
, $R = 80 \text{ lb}$

Also: R = kv

$$\Rightarrow R = 80 \text{ lb} = k \left(-20 \frac{\text{ft}}{\text{sec}}\right)$$
$$\Rightarrow k = \frac{80 \text{ lb}}{-20 \frac{\text{ft}}{\text{sec}}} = -4 \frac{\text{lb sec}}{\text{ft}}$$
$$\Rightarrow k = -4 \frac{\text{lb sec}}{\text{ft}} \quad \text{(For "future reference")}$$

Next: Since there is more than one force acting on the object, let's draw a force diagram of the object.

From the force diagram, the total force F = w + R,

where w is the weight of the object and R is the force on the object, due to air resistance.

Remark: To allow ourselves to model this relationship as a differential equation, we will employ a **standard trick:**

Note well: When more than one force is acting on a free falling object, our approach will usually be to set F (the sum or all forces on the object) equal to ma.

$$\underbrace{(\text{sum of all forces})}_{F} = \underbrace{ma}_{F}$$

This is a standard approach for velocity exercises!!!

Recall: acceleration is the derivative of velocity. i.e., $a = \frac{dv}{dt}$

Thus, Eq. 1 can be rendered:

$$\underbrace{w+kv}_{w+R} = \underbrace{m\frac{dv}{dt}}_{ma}$$

This is a differential equation in v.

Let's solve it!

$$-m\frac{dv}{dt} + kv = -w$$

$$\Rightarrow \frac{dv}{dt} + \underbrace{\left(-\frac{k}{m}\right)}_{P(t)}v = \underbrace{\frac{w}{m}}_{Q(t)}$$

Compute the integrating factor, $e^{\int P(t)dt} = e^{\int \left(-\frac{k}{m}\right)dt} = e^{-\frac{k}{m}t}$

Multiplying both sides by the integrating factor, we have:

$$e^{-\frac{k}{m}t}\frac{dv}{dt} + \left(-\frac{k}{m}\right)e^{-\frac{k}{m}t}v = \frac{w}{m}e^{-\frac{k}{m}t}$$

$$\Rightarrow \frac{d}{dt}\left[e^{-\frac{k}{m}t}v\right] = \frac{w}{m}e^{-\frac{k}{m}t}$$

$$\Rightarrow \int \left(\frac{d}{dt}\left[e^{-\frac{k}{m}t}v\right]\right)dt = \int \frac{w}{m}e^{-\frac{k}{m}t}dt$$

$$\Rightarrow e^{-\frac{k}{m}t}v = \frac{w}{m}\left(-\frac{m}{k}\right)e^{-\frac{k}{m}t} = -\frac{w}{k}e^{-\frac{k}{m}t} + C$$
i.e. $e^{-\frac{k}{m}t}v = -\frac{w}{k}e^{-\frac{k}{m}t} + C$

$$\Rightarrow v = -\frac{w}{k} + e^{\frac{k}{m}t}C$$

Now, let's find the constant C

Recall: $v(0 \text{ sec}) = -40 \frac{\text{ft}}{\text{sec}}$ $\Rightarrow -40 \frac{\text{ft}}{\text{sec}} = v \left(0 \text{ sec} \right) = -\frac{w}{k} + e^{\frac{k}{m}(0 \text{ sec})} C = -\frac{w}{k} + C$ i.e. $-40\frac{\text{ft}}{\text{sec}} = -\frac{w}{k} + C$ $\Rightarrow C = \frac{w}{k} - 40 \frac{\text{ft}}{\text{sec}}$ $\Rightarrow v = -\frac{w}{k} + \left(\frac{w}{k} - 40\frac{\text{ft}}{\text{sec}}\right)e^{\frac{k}{m}t}$ To find $\frac{w}{k}$, recall two things: First, $k = -4 \frac{\text{lb sec}}{\text{ft}}$ Next, the weight, w = -240 lb. Thus, $\frac{w}{k} = \frac{-240 \text{ lb}}{-4\frac{\text{lb sec}}{t_{+}}} = 60 \frac{\text{ft}}{\text{sec}}^*$ i.e., $\frac{w}{k} = 60 \frac{\text{ft}}{\text{sec}}$ Finally, we want to find $\frac{k}{m}$. Note that w = mg, where g is the acceleration due to gravity. $\Rightarrow m = \frac{w}{g} = \frac{-240 \text{ lb}}{-32 \frac{\text{ft}}{\text{ft}}} = 7.5 \frac{\text{lb sec}^2}{\text{ft}}$ i.e., $m = 7.5 \frac{\text{lb sec}^2}{\text{ft}}$ Hence, observe that $\frac{k}{m} = \frac{-4\frac{\text{lb sec}}{\text{ft}}}{7.5\frac{\text{lb sec}^2}{\text{sec}}} = -\frac{0.533}{\text{sec}}$ Therefore, **velocity** is given by: $v(t) = -60 \frac{\text{ft}}{\text{sec}} + \left(60 \frac{\text{ft}}{\text{sec}} - 40 \frac{\text{ft}}{\text{sec}}\right) e^{-\frac{0.533}{\text{sec}}t} = -60 \frac{\text{ft}}{\text{sec}} + 20 \frac{\text{ft}}{\text{sec}} e^{-\frac{0.533}{\text{sec}}t}$ **b)** Therefore, **velocity** is given by: $v(t) = -60 \frac{\text{ft}}{\text{sec}} + 20 \frac{\text{ft}}{\text{sec}} e^{-\frac{0.533}{\text{sec}}t}$ **a)** Find the limiting velocity limiting velocity = $\lim_{t\to\infty} v(t) = \lim_{t\to\infty} \left(v(t) = -60 \frac{\text{ft}}{\text{sec}} + 20 \frac{\text{ft}}{\text{sec}} e^{-\frac{0.533}{\text{sec}}t} \right) = -60 \frac{\text{ft}}{\text{sec}}$ The **limiting velocity** is given by: $v(t) = -60 \frac{\text{ft}}{\text{sec}}$ **Ouch!** At THAT speed, it's really gonna hurt when he hits the ground!!!

To find the **position** at time t, recall that the vertical position $s = \int v(t) dt$ $s(t) = \int v(t) dt = \int \left(-60 \frac{\text{ft}}{\text{sec}} + 20 \frac{\text{ft}}{\text{sec}} e^{-\frac{0.533}{\text{sec}}t}\right) dt = -60 \frac{\text{ft}}{\text{sec}} t + 20 \frac{\text{ft}}{\text{sec}} \left(-\frac{1}{0.533} \text{ sec}\right) e^{-\frac{0.533}{\text{sec}}t} + C$ $= -60 \frac{\text{ft}}{\text{sec}} t - \frac{20}{0.533} \text{ ft } e^{-\frac{0.533}{\text{sec}}t} + C$ i.e., $s(t) = -60 \frac{\text{ft}}{\text{sec}} t - \frac{20}{0.533} \text{ ft } e^{-\frac{0.533}{\text{sec}}t} + C$

No "initial position" is given in the problem, so we will assume that the initial position is 0 ft

Thus, 0 ft = $s(0 \text{ sec}) = -60 \frac{\text{ft}}{\text{sec}}(0 \text{ sec}) - \frac{20}{0.533} \text{ ft } e^{-\frac{0.533}{\text{sec}}(0 \text{ sec})} + C$ i.e., 0 ft = -37.523 ft + C $\Rightarrow C = 37.523 \text{ ft}$

Thus, the vertical position is given by: $s(t) = -60 \frac{\text{ft}}{\text{sec}} t - \frac{20}{0.533} ft e^{-\frac{0.533}{\text{sec}}t} + 37.523 \text{ ft}$

3. The demand and supply of a certain commodity are given in terms of thousands of units, respectively, by:

$$D = 50 + 12p(t) + 2p'(t); \quad S = 450 - 8p(t) - 2p'(t).$$

At t = 0, the price of the commodity is 40 monetary units.

- (a) Find the price at any later time and obtain its graph.
- (b) Determine whether there is price stability. If there is, determine the equilibrium price.

Equating supply and demand, we have:

$$50 + 12p(t) + 2p'(t) = 450 - 8p(t) - 2p'(t)$$

$$\Rightarrow 4p'(t) + 20p(t) = 400$$

$$\Rightarrow p'(t) + \underbrace{5}_{P(t)} p(t) = \underbrace{100}_{Q(t)}$$

Our integrating factor is $e^{\int P(t)dt} = e^{\int 5dt} = e^{5t}$

Multiplying both sides by the integrating factor, e^{5t} , we have:

$$e^{5t}p'(t) + 5e^{5t}p(t) = 100e^{5t}$$

$$\Rightarrow \frac{d}{dt} [e^{5t}p(t)] = 100e^{5t} \text{ Integrating, we have:}$$

$$\Rightarrow \int \left(\frac{d}{dt} [e^{5t}p(t)]\right) dt = \int 100e^{5t} dt$$

$$\Rightarrow e^{5t}p(t) = 100 \left(\frac{1}{5}\right) e^{5t} + C = 20e^{5t} + C$$

i.e., $e^{5t}p(t) = 20e^{5t} + C$

$$\Rightarrow p(t) = 20 + e^{-5t}C$$

To find the constant C, we use our initial condition p(0) = 40 (Because "At t = 0, the price of the commodity is 40 units.")

$$\Rightarrow 40 = p(0) = 20 + e^{-5(0)}C = 20 + C$$

i.e., $40 = 20 + C$
i.e., $20 = C$

Hence, $p(t) = 20 + 20e^{-5t}$ is the price at any time t.

To graph the function, let's consider the derivative. $p'(t) = -100e^{-5t}$

Note that p'(t) < 0 for all values of t, since $e^{\text{ham sandwich}}$ is always positive.

Hence, the graph of p(t) is decreasing.

Next, let's consider the graph of p(t) as $t \to \infty$. $\lim_{t\to\infty} p(t) = \lim_{t\to\infty} (20 + 20e^{-5t}) = 20 + 0 = 20$ i.e., $\lim_{t\to\infty} p(t) = 20$

The graph of y = p(t) is given below:

The market is **stable.** The equilibrium price is 20 units. The price will continue to decrease toward the equilibrium price $p_e = 20$.