MTH 3318- Test \#3-Solutions
 Spring 2024

Pat Rossi
Name \qquad

Instructions. Show your work completely. Document your work well.
Remark 1 For problems 1-3, prove one.

1. $A \cap B=A \Rightarrow A \subseteq B$

Proof. Let the hypothesis be given. (i.e., let $A \cap B=A$).
We need to show that $A \subseteq B$.
So let $x \in A$
$\Rightarrow x \in A \cap B$ (because $A=A \cap B$ by hypothesis).
$\Rightarrow x \in A$ and $x \in B$
In particular, $x \in B$.
We have just shown that $x \in A \Rightarrow x \in B$.
Hence, $A \subseteq B$
2. $(A \cup B)=B \Rightarrow A \subseteq B$

Proof. Let the hypothesis be given. (i.e., let $(A \cup B)=B$)
We need to show that $A \subseteq B$.
So let $x \in A$
$\Rightarrow x \in(A \cup B)$ (because $A \subseteq(A \cup B)$ always!)
$\Rightarrow x \in B$ (because $(A \cup B)=B$ by hypothesis)
i.e., $x \in A \Rightarrow x \in B$

Hence, $A \subseteq B$
3. $A \subseteq B \Rightarrow B^{c} \subseteq A^{c}$

Proof. Let the hypothesis be given. (i.e., let $A \subseteq B$).
We need to show that $B^{c} \subseteq A^{c}$.
So let $x \in B^{c}$
$\Rightarrow x \notin B$
$\Rightarrow x \notin A$ (Otherwise, if x were an element of A, then our hypothesis would imply that
$\Rightarrow x \in B$, contradicting the fact that $x \notin B$.)
$\Rightarrow x \in A^{c}$.
We have shown that $x \in B^{c} \Rightarrow x \in A^{c}$.
Hence, $B^{c} \subseteq A^{c}$.

Remark 2 For problems 4-6, prove one.
4. $(A \cap B)^{c}=A^{c} \cup B^{c}$

Proof. We must show that:
(a) $(A \cap B)^{c} \subseteq A^{c} \cup B^{c}$
and
(b) $A^{c} \cup B^{c} \subseteq(A \cap B)^{c}$
a.
$(A \cap B)^{c} \subseteq A^{c} \cup B^{c}$

Let $x \in(A \cap B)^{c}$
$\Rightarrow x \notin(A \cap B)$
$\Rightarrow x \notin A$ or $x \notin B$
$\Rightarrow x \in A^{c}$ or $x \in B^{c}$
$\Rightarrow x \in A^{c} \cup B^{c}$
We have shown that $x \in(A \cap B)^{c} \Rightarrow x \in A^{c} \cup B^{c}$
Therefore, $(A \cap B)^{c} \subseteq A^{c} \cup B^{c}$
b.
$A^{c} \cup B^{c} \subseteq(A \cap B)^{c}$

Let $x \in A^{c} \cup B^{c}$
$\Rightarrow x \in A^{c}$ or $x \in B^{c}$
$\Rightarrow x \notin A$ or $x \notin B$
$\Rightarrow x \notin(A \cap B)$
$\Rightarrow x \in(A \cap B)^{c}$
We have shown that $x \in A^{c} \cup B^{c} \Rightarrow x \in(A \cap B)^{c}$ Therefore, $A^{c} \cup B^{c} \subseteq(A \cap B)^{c}$
5. $A \subseteq B \Rightarrow(A \cap B)=A$

Let the hypothesis be given. (i.e., let $A \subseteq B$)
We must show that:
a.
$(A \cap B) \subseteq A$ (This is always true.)
and
b. $A \subseteq(A \cap B)$

Let $x \in A$.
$\Rightarrow x \in B$ (Because $A \subseteq B$, by hypothesis).
$\Rightarrow x \in A$ and $x \in B$
$\Rightarrow x \in A \cap B$
We have shown that $x \in A \Rightarrow x \in A \cap B$
Therefore, $A \subseteq(A \cap B)$
6. $(A \cup B)^{c}=A^{c} \cap B^{c}$

Proof. We must show that:
(a) $(A \cup B)^{c} \subseteq A^{c} \cap B^{c}$
and
(b) $A^{c} \cap B^{c} \subseteq(A \cup B)^{c}$
a. $(A \cup B)^{c} \subseteq A^{c} \cap B^{c}$

Let $x \in(A \cup B)^{c}$
$\Rightarrow x \notin(A \cup B)$
$\Rightarrow x \notin A$ and $x \notin B$
$\Rightarrow x \in A^{c}$ and $x \in B^{c}$
$\Rightarrow x \in A^{c} \cap B^{c}$
i.e., $x \in(A \cup B)^{c} \Rightarrow x \in A^{c} \cap B^{c}$

Thus, $(A \cup B)^{c} \subseteq A^{c} \cap B^{c}$
b. $\quad A^{c} \cap B^{c} \subseteq(A \cup B)^{c}$

Let $x \in A^{c} \cap B^{c}$
$\Rightarrow x \in A^{c}$ and $x \in B^{c}$
$\Rightarrow x \notin A$ and $x \notin B$
$\Rightarrow x \notin(A \cup B)$
$\Rightarrow x \in(A \cup B)^{c}$
i.e., $x \in A^{c} \cap B^{c} \Rightarrow x \in(A \cup B)^{c}$

Thus, $A^{c} \cap B^{c} \subseteq(A \cup B)^{c}$

Remark 3 Prove problem 7.
7. $A \cap B=\emptyset \Leftrightarrow\left(B \cap A^{c}\right)=B$

Proof. We must show:
(a) $A \cap B=\emptyset \Rightarrow\left(B \cap A^{c}\right)=B$
and
(b) $\left(B \cap A^{c}\right)=B \Rightarrow A \cap B=\emptyset$
a.
$A \cap B=\emptyset \Rightarrow\left(B \cap A^{c}\right)=B$

Let the hypothesis be given (i.e., suppose that $A \cap B=\emptyset$)
We must show:
i. $\left(B \cap A^{c}\right) \subseteq B$ (This is always true.)
and
ii. $B \subseteq\left(B \cap A^{c}\right)$

Let $x \in B$
$\Rightarrow x \notin A \quad$ (because $A \cap B=\emptyset$ by hypothesis)
$\Rightarrow x \in A^{c}$
i.e., $x \in B$ and $x \in A^{c}$
$\Rightarrow x \in B \cap A^{c}$
i.e., $x \in B \Rightarrow x \in B \cap A^{c}$

Hence, $B \subseteq\left(B \cap A^{c}\right)$
b.
$\left(B \cap A^{c}\right)=B \Rightarrow A \cap B=\emptyset$

Let the hypothesis be given (i.e., suppose that $\left(B \cap A^{c}\right)=B$
To show that $A \cap B=\emptyset$, we must either show that $x \in B \Rightarrow x \notin A$ or that $x \in A \Rightarrow x \notin B$

We will choose the latter: $x \in B \Rightarrow x \notin A$
Let $x \in B$
$\Rightarrow x \in\left(B \cap A^{c}\right) \quad$ (Because $\left(B \cap A^{c}\right)=B$, by our hypothesis)
$\Rightarrow x \in B$ and $x \in A^{c}$
Specifically, $x \in A^{c}$
$\Rightarrow x \notin A$
i.e., $x \in B \Rightarrow x \notin A$

Thus, $A \cap B=\emptyset$

Remark 4 For problems 8-9, prove either one by contradiction.
8. $(A \cap B) \subseteq A$

Proof. (By contradiction). Suppose, for the sake of deriving a contradiction, that $(A \cap B) \nsubseteq A$
$\Rightarrow \exists x, \ni x \in(A \cap B)$ and $x \notin A$
i.e., $\exists x, \ni x \in A$ and $x \in B$, and $x \notin A$
specifically, $\exists x, \ni x \in A$ and $x \notin A$, which is a contradiction.
Since the assumption that $(A \cap B) \nsubseteq A$ yields a contradiction, the assumption must be false.

Hence, $(A \cap B) \subseteq A$
9. $(A \cap B)=\emptyset \Rightarrow A \subseteq B^{c}$

Proof. (By contradiction). Let the hypothesis, be given.
i.e., Suppose that $(A \cap B)=\emptyset$.

Suppose also, for the sake of deriving a contradiction, that $A \nsubseteq B^{c}$.
$\Rightarrow \exists x, \ni x \in A$ and $x \notin B^{c}$
$\Rightarrow \exists x, \ni x \in A$ and $x \in B$
$\Rightarrow \exists x, \ni x \in(A \cap B)$, contradicting the assumption that $(A \cap B)=\emptyset$.
Since the assumption that $(A \cap B) \nsubseteq A$ yields a contradiction, the assumption must be false.

Hence, $(A \cap B) \subseteq A$

Remark 5 For problems 10-11, prove either one, by proving the contrapositive.
10. $\underbrace{A \subseteq B}_{p} \Rightarrow \underbrace{(A \cap B)=A}_{q}$

Proof. We will prove the contrapositive, $\underbrace{(A \cap B) \neq A}_{\sim q} \Rightarrow \underbrace{A \nsubseteq B}_{\sim p}$.
Let the hypothesis be given. (i.e., Suppose that $(A \cap B) \neq A)$.
\Rightarrow either $(A \cap B) \nsubseteq A$ or $A \nsubseteq(A \cap B)$. (Otherwise, if each set were a subset of the other, the sets would be equal, contrary to our hypothesis.)

Since $(A \cap B) \subseteq A$ (always!) this leaves, as the only possibility, $A \nsubseteq(A \cap B)$.
$\Rightarrow \exists x \in A$ such that $x \notin(A \cap B)$
$\Rightarrow x \in A$, and either: $x \notin A$ or $x \notin B$.
i.e., $\underbrace{x \in A \text { and } x \notin A}_{\text {impossible }}$, or $x \in A$ and $x \notin B$
$\Rightarrow x \in A$ and $x \notin B$.
i.e., A contains an element that is not contained in B.

Hence, $A \nsubseteq B$.
We have shown that $(A \cap B) \neq A \Rightarrow A \nsubseteq B$.
11. $\underbrace{(A \cup B)=B}_{p} \Rightarrow \underbrace{A \subseteq B}_{q}$

Proof. We will prove the contrapositive, $\underbrace{A \nsubseteq B}_{\sim q} \Rightarrow \underbrace{(A \cup B) \neq B}_{\sim p}$
Let the hypothesis be given. (i.e., Suppose that $A \nsubseteq B$)
We must show that:
a. $(A \cup B) \nsubseteq B$
or
b. $B \nsubseteq(A \cup B) \quad$ (This is impossible because $B \subseteq(A \cup B)$ for ALL sets A and $B)$

Thus, we must show that $(A \cup B) \nsubseteq B$
This just requires that we provide a counter-example.
To create a counter-example, it is often helpful to consider "odd-ball characters" or things that have "unique characteristics."

Let's consider $A=U$, where U is nonempty, and $B=\varnothing$.
Then $(A \cup B)=U \cup \varnothing=U \nsubseteq \varnothing=B$
i.e., $(A \cup B) \nsubseteq B$

We have shown that $\underbrace{A \nsubseteq B}_{\sim q} \Rightarrow \underbrace{(A \cup B) \neq B}_{\sim p}$.
Consequently, $\underbrace{(A \cup B)=B}_{p} \Rightarrow \underbrace{A \subseteq B}_{q}$

Remark 6 Disprove problem 12 by providing a counter-example.
12. $(A \cup B)^{c}=A^{c} \cup B^{c}$

To create a counter-example, it is often helpful to consider "odd-ball characters" or things that have "unique characteristics."

Let's consider $A=\varnothing$ and $B=U$, where U is nonempty.
Then $A \cup B=\varnothing \cup U=U$
$\Rightarrow(A \cup B)^{c}=U^{c}=\varnothing$
i.e., $(A \cup B)^{c}=\varnothing$

Also, $A^{c}=\varnothing^{c}=U$
and $B^{c}=U^{c}=\varnothing$
and $A^{c} \cup B^{c}=U \cup \varnothing=U$
i.e., $A^{c} \cup B^{c}=U$

Thus, we have: $(A \cup B)^{c}=\varnothing \neq U=A^{c} \cup B^{c}$
i.e., $(A \cup B)^{c} \neq A^{c} \cup B^{c}$

