MTH 3318 - Test #3 - Solutions

Spring 2024

Pat Rossi

Name _

Instructions. Show your work completely. Document your work well.

Remark 1 For problems 1 - 3, prove one.

1. $A \cap B = A \Rightarrow A \subseteq B$

Proof. Let the hypothesis be given. (i.e., let $A \cap B = A$).

We need to show that $A \subseteq B$.

So let $x \in A$

 $\Rightarrow x \in A \cap B$ (because $A = A \cap B$ by hypothesis).

 $\Rightarrow x \in A \text{ and } x \in B$

In particular, $x \in B$.

We have just shown that $x \in A \Rightarrow x \in B$.

Hence, $A \subseteq B \blacksquare$

2.
$$(A \cup B) = B \Rightarrow A \subseteq B$$

Proof. Let the hypothesis be given. (i.e., let $(A \cup B) = B$)

We need to show that $A \subseteq B$.

So let $x \in A$ $\Rightarrow x \in (A \cup B)$ (because $A \subseteq (A \cup B)$ always!) $\Rightarrow x \in B$ (because $(A \cup B) = B$ by hypothesis) i.e., $x \in A \Rightarrow x \in B$

Hence, $A \subseteq B \blacksquare$

3. $A \subseteq B \Rightarrow B^c \subseteq A^c$

Proof. Let the hypothesis be given. (i.e., let $A \subseteq B$).

We need to show that $B^c \subseteq A^c$.

So let $x \in B^c$

 $\Rightarrow x \notin B$

 $\Rightarrow x \notin A$ (Otherwise, if x were an element of A, then our hypothesis would imply that $\Rightarrow x \in B$, contradicting the fact that $x \notin B$.)

 $\Rightarrow x \in A^c$.

We have shown that $x \in B^c \Rightarrow x \in A^c$.

Hence, $B^c \subseteq A^c$.

Remark 2 For problems 4 - 6, prove one.

4. $(A \cap B)^c = A^c \cup B^c$

Proof. We must show that:

- (a) $(A \cap B)^c \subseteq A^c \cup B^c$ and
- (b) $A^c \cup B^c \subseteq (A \cap B)^c$
- a. $(A \cap B)^c \subseteq A^c \cup B^c$
 - Let $x \in (A \cap B)^c$
 - $\Rightarrow x \notin (A \cap B)$
 - $\Rightarrow x \notin A \text{ or } x \notin B$
 - $\Rightarrow x \in A^c \, \mathrm{or} \, \, x \in B^c$
 - $\Rightarrow x \in A^c \cup B^c$

We have shown that $x \in (A \cap B)^c \Rightarrow x \in A^c \cup B^c$

Therefore, $(A \cap B)^c \subseteq A^c \cup B^c$

b.
$$A^c \cup B^c \subseteq (A \cap B)^c$$

Γ

Let $x \in A^c \cup B^c$

- $\Rightarrow x \in A^c \, \text{or} \, x \in B^c$
- $\Rightarrow x \notin A \text{ or } x \notin B$
- $\Rightarrow x \notin (A \cap B)$
- $\Rightarrow x \in (A \cap B)^c$

We have shown that $x \in A^c \cup B^c \Rightarrow x \in (A \cap B)^c$

Therefore, $A^c \cup B^c \subseteq (A \cap B)^c \blacksquare$

5. $A \subseteq B \Rightarrow (A \cap B) = A$

Let the hypothesis be given. (i.e., let $A\subseteq B)$

We must show that:

a.
$$(A \cap B) \subseteq A$$
 (This is *always* true.)

and

Г

b.
$$A \subseteq (A \cap B)$$

Let $x \in A$.

- $\Rightarrow x \in B$ (Because $A \subseteq B$, by hypothesis).
- $\Rightarrow x \in A \text{ and } x \in B$

$$\Rightarrow x \in A \cap B$$

We have shown that $x\in A\Rightarrow x\in A\cap B$

Therefore, $A \subseteq (A \cap B) \blacksquare$

6. $(A \cup B)^c = A^c \cap B^c$

Proof. We must show that:

- (a) $(A \cup B)^c \subseteq A^c \cap B^c$ and
- (b) $A^c \cap B^c \subseteq (A \cup B)^c$
 - a. $(A \cup B)^c \subseteq A^c \cap B^c$
 - Let $x \in (A \cup B)^c$ $\Rightarrow x \notin (A \cup B)$ $\Rightarrow x \notin A \text{ and } x \notin B$ $\Rightarrow x \in A^c \text{ and } x \in B^c$ $\Rightarrow x \in A^c \cap B^c$ i.e., $x \in (A \cup B)^c \Rightarrow x \in A^c \cap B^c$ Thus, $(A \cup B)^c \subseteq A^c \cap B^c$

b.
$$A^c \cap B^c \subseteq (A \cup B)^c$$

ſ

Let $x \in A^c \cap B^c$ $\Rightarrow x \in A^c$ and $x \in B^c$ $\Rightarrow x \notin A$ and $x \notin B$ $\Rightarrow x \notin (A \cup B)$ $\Rightarrow x \in (A \cup B)^c$ i.e., $x \in A^c \cap B^c \Rightarrow x \in (A \cup B)^c$ Thus, $A^c \cap B^c \subseteq (A \cup B)^c \blacksquare$ Remark 3 Prove problem 7.

7. $A \cap B = \emptyset \Leftrightarrow (B \cap A^c) = B$

Proof. We must show:

(a)
$$A \cap B = \emptyset \Rightarrow (B \cap A^c) = B$$

and

(b)
$$(B \cap A^c) = B \Rightarrow A \cap B = \emptyset$$

a.
$$A \cap B = \emptyset \Rightarrow (B \cap A^c) = B$$

Let the hypothesis be given (i.e., suppose that $A \cap B = \emptyset$) We must show:

i.
$$(B \cap A^c) \subseteq B$$
 (This is always true.)
and
ii. $B \subseteq (B \cap A^c)$
Let $x \in B$
 $\Rightarrow x \notin A$ (because $A \cap B = \emptyset$ by hypothesis)
 $\Rightarrow x \in A^c$
i.e., $x \in B$ and $x \in A^c$
 $\Rightarrow x \in B \cap A^c$
i.e., $x \in B \Rightarrow x \in B \cap A^c$
Hence, $B \subseteq (B \cap A^c)$

b. $(B \cap A^c) = B \Rightarrow A \cap B = \emptyset$

Let the hypothesis be given (i.e., suppose that $(B \cap A^c) = B$

To show that $A \cap B = \emptyset$, we must either show that $x \in B \Rightarrow x \notin A$ or that $x \in A \Rightarrow x \notin B$

We will choose the latter: $x \in B \Rightarrow x \notin A$

Let $x \in B$ $\Rightarrow x \in (B \cap A^c)$ (Because $(B \cap A^c) = B$, by our hypothesis) $\Rightarrow x \in B$ and $x \in A^c$ Specifically, $x \in A^c$ $\Rightarrow x \notin A$ i.e., $x \in B \Rightarrow x \notin A$ Thus, $A \cap B = \emptyset$

7

Remark 4 For problems 8 - 9, prove either one by contradiction.

8. $(A \cap B) \subseteq A$

Proof. (By contradiction). Suppose, for the sake of deriving a contradiction, that $(A \cap B) \not\subseteq A$

 $\Rightarrow \exists x, \ \mathbf{i} x \in (A \cap B) \text{ and } x \notin A$

i.e., $\exists x, \ \flat x \in A$ and $x \in B$, and $x \notin A$

specifically, $\exists x, \ i x \in A$ and $x \notin A$, which is a contradiction.

Since the assumption that $(A \cap B) \nsubseteq A$ yields a contradiction, the assumption must be false.

Hence, $(A \cap B) \subseteq A \blacksquare$

9. $(A \cap B) = \emptyset \Rightarrow A \subseteq B^c$

Proof. (By contradiction). Let the hypothesis, be given. i.e., Suppose that $(A \cap B) = \emptyset$.

Suppose also, for the sake of deriving a contradiction, that $A \nsubseteq B^c$.

 $\Rightarrow \exists x, \exists x \in A \text{ and } x \notin B^c$

 $\Rightarrow \exists x, \ \mathbf{i} x \in A \text{ and } x \in B$

 $\Rightarrow \exists x, \exists x \in (A \cap B)$, contradicting the assumption that $(A \cap B) = \emptyset$.

Since the assumption that $(A \cap B) \nsubseteq A$ yields a contradiction, the assumption must be false.

Hence, $(A \cap B) \subseteq A \blacksquare$

Remark 5 For problems 10 - 11, prove either one, by proving the contrapositive.

10.
$$\underbrace{A \subseteq B}_{p} \Rightarrow \underbrace{(A \cap B) = A}_{q}$$

Proof. We will prove the contrapositive, $\underbrace{(A \cap B) \neq A}_{\sim q} \Rightarrow \underbrace{A \nsubseteq B}_{\sim p}$.

Let the hypothesis be given. (i.e., Suppose that $(A \cap B) \neq A$).

 \Rightarrow either $(A \cap B) \nsubseteq A$ or $A \nsubseteq (A \cap B)$. (Otherwise, if each set were a subset of the other, the sets would be equal, contrary to our hypothesis.)

Since $(A \cap B) \subseteq A$ (always!) this leaves, as the only possibility, $A \nsubseteq (A \cap B)$.

 $\Rightarrow \exists x \in A \text{ such that } x \notin (A \cap B)$

- $\Rightarrow x \in A$, and either: $x \notin A$ or $x \notin B$.
- i.e., $\underbrace{x \in A \text{ and } x \notin A}_{\text{impossible}}$, or $x \in A$ and $x \notin B$
- $\Rightarrow x \in A \text{ and } x \notin B.$

i.e., A contains an element that is not contained in B.

Hence, $A \not\subseteq B$.

We have shown that $(A \cap B) \neq A \Rightarrow A \nsubseteq B$.

11.
$$\underbrace{(A \cup B) = B}_{p} \Rightarrow \underbrace{A \subseteq B}_{q}$$

Proof. We will prove the contrapositive, $\underbrace{A \not\subseteq B}_{\sim q} \Rightarrow \underbrace{(A \cup B) \neq B}_{\sim p}$

Let the hypothesis be given. (i.e., Suppose that $A \nsubseteq B$) We must show that:

a. $(A \cup B) \nsubseteq B$ or

b. $B \nsubseteq (A \cup B)$ (This is impossible because $B \subseteq (A \cup B)$ for ALL sets A and B)

Thus, we must show that $(A \cup B) \nsubseteq B$

This just requires that we provide a counter-example.

To create a counter-example, it is often helpful to consider "odd-ball characters" or things that have "unique characteristics."

Let's consider A = U, where U is nonempty, and $B = \emptyset$.

Then $(A \cup B) = U \cup \varnothing = U \nsubseteq \varnothing = B$

i.e., $(A \cup B) \nsubseteq B$

We have shown that $\underbrace{A \nsubseteq B}_{\sim q} \Rightarrow \underbrace{(A \cup B) \neq B}_{\sim p}$.

Consequently, $\underbrace{(A \cup B) = B}_{p} \Rightarrow \underbrace{A \subseteq B}_{q} \blacksquare$

Remark 6 Disprove problem 12 by providing a counter-example.

12. $(A \cup B)^c = A^c \cup B^c$

To create a counter-example, it is often helpful to consider "odd-ball characters" or things that have "unique characteristics."

Let's consider $A = \emptyset$ and B = U, where U is nonempty.

Then $A \cup B = \emptyset \cup U = U$ $\Rightarrow (A \cup B)^c = U^c = \emptyset$ i.e., $(A \cup B)^c = \emptyset$ Also, $A^c = \emptyset^c = U$ and $B^c = U^c = \emptyset$ and $A^c \cup B^c = U \cup \emptyset = U$ i.e., $A^c \cup B^c = U$ Thus, we have: $(A \cup B)^c = \emptyset \neq U = A^c \cup B^c$

i.e., $(A \cup B)^c \neq A^c \cup B^c \blacksquare$