Proofs Involving Classic Theorems of Functions

Spring 2006

Pat Rossi

Name _

Exercises

- 1. **Prove:** If $f : A \longrightarrow B$ is one to one and $g : B \longrightarrow C$ is one to one, then $g \circ f : A \longrightarrow C$ is one to one. (i.e., The composition of one to one functions is one to one.)
- 2. Prove: If $f : A \longrightarrow B$ is onto and $g : B \longrightarrow C$ is onto, then $g \circ f : A \longrightarrow C$ is onto. (i.e., The composition of onto functions is onto.)
- 3. If $g \circ f : A \longrightarrow C$ is one to one, is either $f : A \longrightarrow B$ or $g : B \longrightarrow C$ one to one? Prove or Disprove. (Hint: when looking for a counter-example, strive for a simple counter-example; one where neither the domain nor the range has more than two or three elements.)
- 4. If $g \circ f : A \longrightarrow C$ is onto, is either $f : A \longrightarrow B$ or $g : B \longrightarrow C$ onto? Prove or Disprove. (Hint: when looking for a counter-example, strive for a simple counter-example; one where neither the domain nor the range has more than two or three elements.)
- 5. Prove: Function composition is associative. (i.e. $(h \circ g) \circ f = h \circ (g \circ f)$).
- 6. Prove: If $f: A \longrightarrow B$ and $g: B \longrightarrow C$ have inverses, then $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$
- 7. Prove or disprove: A real valued function f(x) is one to one if and only if it is monotone increasing or monotone decreasing.
- 8. Prove: A function $f: A \longrightarrow B$ has an inverse $f^{-1}: B \longrightarrow A$ if and only if f is one to one and onto.
- 9. Prove: $f: A \longrightarrow B$ is one to one and onto, if and only if $f^{-1} \circ f = 1_A$ and $f \circ f^{-1} = 1_B$.
- 10. Find a counter-example to show that $g \circ f = 1_A$ is not sufficient to guarantee that $f \circ g = 1_B$. (Hint: Strive for a simple counter-example one where neither the domain nor the range has more than two or three elements.)