Proofs Involving Classic Theorems of Functions

Spring 2006

Pat Rossi
Name \qquad

Exercises

1. Prove: If $f: A \longrightarrow B$ is one to one and $g: B \longrightarrow C$ is one to one, then $g \circ f: A \longrightarrow C$ is one to one. (i.e., The composition of one to one functions is one to one.)
2. Prove: If $f: A \longrightarrow B$ is onto and $g: B \longrightarrow C$ is onto, then $g \circ f: A \longrightarrow C$ is onto. (i.e., The composition of onto functions is onto.)
3. If $g \circ f: A \longrightarrow C$ is one to one, is either $f: A \longrightarrow B$ or $g: B \longrightarrow C$ one to one? Prove or Disprove. (Hint: when looking for a counter-example, strive for a simple counter-example; one where neither the domain nor the range has more than two or three elements.)
4. If $g \circ f: A \longrightarrow C$ is onto, is either $f: A \longrightarrow B$ or $g: B \longrightarrow C$ onto? Prove or Disprove. (Hint: when looking for a counter-example, strive for a simple counter-example; one where neither the domain nor the range has more than two or three elements.)
5. Prove: Function composition is associative. (i.e. $(h \circ g) \circ f=h \circ(g \circ f))$.
6. Prove: If $f: A \longrightarrow B$ and $g: B \longrightarrow C$ have inverses, then $(g \circ f)^{-1}=f^{-1} \circ g^{-1}$
7. Prove or disprove: A real valued function $f(x)$ is one to one if and only if it is monotone increasing or monotone decreasing.
8. Prove: A function $f: A \longrightarrow B$ has an inverse $f^{-1}: B \longrightarrow A$ if and only if f is one to one and onto.
9. Prove: $f: A \longrightarrow B$ is one to one and onto, if and only if $f^{-1} \circ f=1_{A}$ and $f \circ f^{-1}=1_{B}$.
10. Find a counter-example to show that $g \circ f=1_{A}$ is not sufficient to guarantee that $f \circ g=1_{B}$. (Hint: Strive for a simple counter-example - one where neither the domain nor the range has more than two or three elements.)
