Logic Exercise Set \#6 - Solutions

FALL 2022

Pat Rossi
Name \qquad
Instructions. Determine whether the given arguments are valid.

1. $(p \rightarrow q) \wedge(q \rightarrow r) \therefore(p \rightarrow r)$

Answer:

p	q	r	$p \rightarrow q$	$q \rightarrow r$	$p \rightarrow r$	$(p \rightarrow q) \wedge(q \rightarrow r)$	$[(p \rightarrow q) \wedge(q \rightarrow r)] \rightarrow(p \rightarrow r)$
T	T	T	T	T	T	T	T
T	T	F	T	F	F	F	T
T	F	T	F	T	T	F	T
T	F	F	F	T	F	F	T
F	T	T	T	T	T	T	T
F	T	F	T	F	T	F	T
F	F	T	T	T	T	T	T
F	F	F	T	T	T	T	T

Since the argument is a tautology, it is VALID.
2. $[(p \rightarrow q) \wedge \sim p] \therefore \sim q$

ANSWER:

p	q	$\sim p$	$\sim q$	$p \rightarrow q$	$(p \rightarrow q) \wedge \sim p$	$[(p \rightarrow q) \wedge \sim p] \rightarrow(\sim q)$
T	T	F	F	T	F	T
T	F	F	T	F	F	T
F	T	T	F	T	T	F
F	F	T	T	T	T	T

Since the argument is not a tautology, it is INVALID
3. $[(p \rightarrow q) \wedge q] \therefore p$

ANSWER:

p	q	$p \rightarrow q$	$(p \rightarrow q) \wedge q$	$[(p \rightarrow q) \wedge q] \rightarrow p$
T	T	T	T	T
T	F	F	F	T
F	T	T	T	F
F	F	T	F	T

Since the argument is not a tautology, it is INVALID
4. No pilots are scubadivers. Some women are scubadivers. Therefore, no women are pilots.
Answer: Making the following assignments:
\mathbf{P} - pilots, $\quad \mathbf{S}$ - scubadivers, \mathbf{W} - women
We have:

Since the circles can be drawn in such a way that the premises are true and the conclusion is false, the argument is INVALID.
5. Some musicians are tone deaf. Jimmy is tone deaf. Therefore, Jimmy is a musician.

Answer: Making the following assignments:
\mathbf{M} - musicians, \mathbf{T} - tone deaf
We have:

Since the circles can be drawn in such a way that the premises are true and the conclusion is false, the argument is INVALID.
6. All Europeans are well schooled. Some people who are well schooled are interesting. Ben is not interesting. Therefore, Ben is not European.
Answer: Making the following assignments:
\mathbf{E} - Europeans, \mathbf{W} - people who are well schooled, I - interesting people
We have:

Since the circles can be drawn in such a way that the premises are true and the conclusion is false, the argument is INVALID.
7. Give the converse and the contrapositive of the following statements:
(a) If $x+y=1$, then $x^{2}+y^{2} \geq 1$.

Converse: If $x^{2}+y^{2} \geq 1$, then $x+y=1$.
Contrapositive: If $x^{2}+y^{2}<1$, then $x+y \neq 1$.
(b) If $2+2=4$, then $3+3=8$.

Converse: If $3+3=8$, then $2+2=4$.
Contrapositive: If $3+3 \neq 8$, then $2+2 \neq 4$.
(c) If $x>0$, then $x^{2}>0$.

Converse: If $x^{2}>0$, then $x>0$.
Contrapositive: If $x^{2} \leq 0$, then $x \leq 0$.
(d) If my car is not running, then I will walk to school.

Converse: If I walk to school, then my car is not running.
Contrapositive: If I don't walk to school, then my car is running.
(e) If I have any money left over, I will pay the rent.

Converse: If I pay the rent, then I have money left over.
Contrapositive: If I don't pay the rent, then I don't have money left over.

