Logic Exercise Set #6 - Solutions

 $\mathrm{Fall}\ 2022$

Pat Rossi

Name ____

Instructions. Determine whether the given arguments are valid.

1. $(p \rightarrow q) \land (q \rightarrow r) \therefore (p \rightarrow r)$

Answer:

p	q	r	$p \rightarrow q$	$q \rightarrow r$	$p \rightarrow r$	$(p \to q) \land (q \to r)$	$[(p \to q) \land (q \to r)] \to (p \to r)$
Т	Т	Т	Т	Т	Т	Т	Т
Т	Т	F	Т	F	F	F	Т
Т	F	Т	F	Т	Т	F	Т
Т	F	F	F	Т	F	F	Т
F	Т	Т	Т	Т	Т	Т	Т
F	Т	F	Т	F	Т	F	Т
F	F	Т	Т	Т	Т	Т	Т
F	F	F	Т	Т	Т	Т	Т

Since the argument is a tautology, it is **VALID**.

2. $[(p \rightarrow q) \land \ \sim p] \therefore \ \sim q$

ANSWER:

p	q	$\sim p$	$\sim q$	$p \rightarrow q$	$(p \to q) \land \sim p$	$\left[(p \to q) \land \ \sim p \right] \to (\sim q) \right]$
Т	Т	F	\mathbf{F}	Т	F	Т
Т	F	F	Т	F	F	Т
F	Т	Т	F	Т	Т	F
F	F	Т	Т	Т	Т	Т

Since the argument is not a tautology, it is **INVALID**

3. $[(p \rightarrow q) \land q] \therefore p$

ANSWER:

p	q	$p \rightarrow q$	$(p \rightarrow q) \land q$	$\left[(p \to q) \land q \right] \to p$
Т	Т	Т	Т	Т
Т	F	F	F	Т
F	Т	Т	Т	F
F	F	Т	F	Т

Since the argument is not a tautology, it is **INVALID**

4. No pilots are scubadivers. Some women are scubadivers. Therefore, no women are pilots.

Answer: Making the following assignments:

 \mathbf{P} - pilots, \mathbf{S} - scubadivers, \mathbf{W} - women

We have:

Since the circles can be drawn in such a way that the premises are true and the conclusion is false, the argument is **INVALID**.

5. Some musicians are tone deaf. Jimmy is tone deaf. Therefore, Jimmy is a musician.

Answer: Making the following assignments:

 \mathbf{M} - musicians, \mathbf{T} - tone deaf

We have:

Since the circles can be drawn in such a way that the premises are true and the conclusion is false, the argument is **INVALID**.

6. All Europeans are well schooled. Some people who are well schooled are interesting. Ben is not interesting. Therefore, Ben is not European.

Answer: Making the following assignments:

 ${\bf E}$ - Europeans, $~{\bf W}$ - people who are well schooled, $~{\bf I}$ - interesting people We have:

Since the circles can be drawn in such a way that the premises are true and the conclusion is false, the argument is **INVALID**.

- 7. Give the converse and the contrapositive of the following statements:
 - (a) If x + y = 1, then $x^2 + y^2 \ge 1$. Converse: If $x^2 + y^2 \ge 1$, then x + y = 1. Contrapositive: If $x^2 + y^2 < 1$, then $x + y \ne 1$.
 - (b) If 2 + 2 = 4, then 3 + 3 = 8.
 Converse: If 3 + 3 = 8, then 2 + 2 = 4.
 Contrapositive: If 3 + 3 ≠ 8, then 2 + 2 ≠ 4.
 - (c) If x > 0, then $x^2 > 0$. **Converse:** If $x^2 > 0$, then x > 0. **Contrapositive:** If $x^2 \le 0$, then $x \le 0$.
 - (d) If my car is not running, then I will walk to school.Converse: If I walk to school, then my car is not running.Contrapositive: If I don't walk to school, then my car is running.
 - (e) If I have any money left over, I will pay the rent.Converse: If I pay the rent, then I have money left over.Contrapositive: If I don't pay the rent, then I don't have money left over.